Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

CRISPR screen uncovers hundreds of genes required for brain development

Which genes are required for turning embryonic stem cells into brain cells, and what happens when this process goes wrong? In a new study published today in Nature Neuroscience, researchers led by Prof. Sagiv Shifman from The Institute of Life Sciences at The Hebrew University of Jerusalem, in collaboration with Prof. Binnaz Yalcin from INSERM, France, used genome-wide CRISPR knockout screens to identify genes that are needed for early brain development.

The study set out to answer a straightforward question: which genes are required for the proper development of brain cells?

Using CRISPR-based gene-editing methods, the researchers systematically and individually “switched off” roughly 20,000 genes to study their role in brain development. They performed the screen in embryonic stem cells while the cells changed into brain cells. By disrupting genes one by one, the team could see which genes are required for this transition to proceed normally.

Scientists Create a New Crystal That Twists Magnetism Into Exotic Swirls

By forcing crystal structures to compete, scientists uncovered a new way to make magnetism twist. Florida State University scientists have developed a new crystalline material whose magnetic behavior differs sharply from that of conventional magnets, opening potential paths toward advances in dat

Small-Interfering RNA Olpasiran and Apolipoprotein B Particles

Small-interfering RNA olpasiran reduced lipoprotein(a)–apolipoprotein B particles by 95% with minimal rise in non–Lp(a)-apoB, lowering total apoB concentration in patients with cardiovascular disease.


This secondary analysis of the OCEAN(a)-DOSE randomized clinical trial investigates the effect of the small-interfering RNA olpasiran on atherogenic lipoproteins.

Glucagonlike Peptide-1 Receptor Agonists and Asthma Risk in Adolescents With Obesity

This retrospective cohort study reported an association between GLP1RA use and a lower risk of acute asthma exacerbations in adolescents with overweight or obesity, suggesting a potential dual benefit for this population.


This cohort study investigates the association between glucagonlike peptide-1 receptor agonist use and the risk of acute asthma exacerbations among adolescents with overweight or obesity and asthma.

Aluminium in human brain tissue from donors without neurodegenerative disease: A comparison with Alzheimer’s disease, multiple sclerosis and autism

We present the first comprehensive data set for the aluminium content of brain tissue in donors without a diagnosis of neurodegenerative disease. All donors fulfilled recently revised criteria for control brain tissues. Approximately 80% of measured tissues have an aluminium content below 1.0 μg/g dry wt. (Table 1). There are some anomalies, 6 out of 191 tissues have an aluminium content ≥3.00 μg/g dry wt., and these are worth future investigation to identify possible neuropathology. There was no statistically significant relationship between brain aluminium content and age of donor and this observation is contrary to a previous investigation of brain aluminium in a neurologically normal population. An explanation may be that herein only two out of twenty donors were below 66 years old. The data do support a conclusion that a high content of brain aluminium is not an inevitability of ageing.

When we compared the new control data set with data produced in an identical manner in donors dying with diagnoses of sporadic Alzheimer’s disease (sAD)16, familial Alzheimer’s disease (fAD)11, autism spectrum disorder (ASD)13 and multiple sclerosis (MS)12 all of these disease groups had significantly higher brain aluminium content. The differences were always highly significant regardless of the method of statistical analysis (Table 4). The largest disease group, designated as sAD, was actually composed of approximately equal numbers of donors previously described by a brain bank as controls and donors diagnosed with sAD. Unfortunately, information discriminating between control and sAD donors was not made available to us17. However, the observation that the aluminium content of brain tissue in this group as a whole was significantly higher than the similarly aged control group emphasised the likelihood that brain aluminium content is increased in sAD.

/* */