In Intel’s second “Behind this Door” video, take a sneak peek into fab D1X in Oregon to see what is likely the most complicated machine humans have built. An extreme ultraviolet (EUV) lithography system uses radically shorter wavelengths to project circuit patterns onto silicon wafers. The #EUV machine pushes Moore’s Law forward and #chip makers cannot produce leading-edge chips without it. (Credit: Intel Corporation) #Intel #Manufacturing #Semiconductor.
Notice: This video contains footage provided by external vendors who have their own safety and health policies. Moreover, some footage was recorded prior to the COVID outbreak when no pandemic-related mask or social-distancing policies were needed or in place.
One of the key goals within the field of quantum computing is to achieve what is known as a quantum advantage. This term essentially describes the point after which a quantum computer can outperform a classical computer on a specific task or solve a problem that is beyond the reach of classical computers.
One task that could be used to demonstrate a quantum advantage, known as quantum random sampling, entails the generation of samples from a probability distribution. This task is very difficult for classical computers to perform, but it could theoretically be completed by quantum computers.
While past studies have successfully tackled random sampling tasks using quantum computers, actually verifying that a system effectively performs these tasks has proved challenging. This is because many existing verification techniques based on classical data are either too computationally demanding or difficult to apply to larger quantum systems.
A team of security researchers has disclosed new side-channel vulnerabilities in modern Apple processors that could steal sensitive information from web browsers.
The Georgia Institute of Technology and Ruhr University Bochum researchers, who presented another attack dubbed ‘iLeakage’ in October 2023, presented their new findings in two separate papers, namely FLOP and SLAP, which show distinct flaws and ways to exploit them.
The flaws stem from faulty speculative execution implementation, the underlying cause of notorious attacks like Spectre and Meltdown.
Did Mars have lakes and rivers during a single period or over separate periods? This is what a recent study published in Nature Geoscience hopes to address as an international team of researchers investigated whether Mars experienced a single event of liquid water on its surface, or many events spread over millions of years. This study has the potential to help scientists better understand the early conditions on Mars and whether these conditions were suitable to support life as we know it.
“Early Mars is a lost world, but it can be reconstructed in great detail if we ask the right questions,” said Dr. Robin Wordsworth, who is a Gordon McKay Professor of Environmental Science and Engineering at Harvard University and a co-author on the study. “This study synthesizes atmospheric chemistry and climate for the first time, to make some striking new predictions – which are testable once we bring Mars rocks back to Earth.”
For the study, the researchers used a series of computer models to simulate how the atmosphere on Mars billions of years ago potentially reacted to surface water-rock interactions and climate changes over time. The goal was to ascertain whether Mars experienced a single event of liquid water on its surface, or a series of events spread over millions of years with periods of dryness in between them.
Needham raised the firm’s price target on D-Wave Quantum (QBTS) to $8.50 from $2.25 and keeps a Buy rating on the shares as part of a broader research note on Quantum Computing names. Over the past several months, the combination of technical milestone achievements, announcements of quantum contract awards of increasing dollar value and mentions of quantum computing by leading technology CEOs has increased awareness of the potential opportunity for quantum computing among mainstream investors, and reflecting this increased awareness, the stock prices of pure play quantum computing companies have increased several fold since September 30, 2024, the analyst tells investors in a research note. s. 5.9% for the S&P 500. The increasing valuations for quantum computing companies reflect growing recognition that quantum computing may disrupt a meaningful portion of the $1T computing market over the next decade, the firm added.
The OS axiom posits that reality operates like a computational construct. Think of it as an evolving cosmic master algorithm—a fractal code that is both our origin and our ultimate destiny. This axiom doesn’t diminish the beauty or mystery of existence; on the contrary, it elevates it. When we think of the universe as a computation, we realize that the laws of physics, the flow of time, and even the emergence of consciousness are not random accidents but inevitable outcomes of this higher-order system.
This concept naturally leads us to the Omega Singularity, a term I use to describe the ultimate point of universal complexity and consciousness. Inspired by Pierre Teilhard de Chardin’s Omega Point, this cosmological singularity is where all timelines of evolution, computation, and consciousness converge into a state of absolute unity—a state where the boundaries between the observer and the observed dissolve entirely. In The Omega Singularity, I elaborate on how this transcendent endpoint represents not just the culmination of physical reality but the quintessence of the “Universal Mind” capable of creating infinite simulations, much like we create virtual worlds today.
But let’s take a step back. How does this all relate to the OS axiom? If the universe is computational, it means that all processes—be they physical, biological, or cognitive—are governed by fundamental rules, much like a computer program. From the fractal geometry of snowflakes to the self-organizing principles of life and intelligence, we see the OS postulate at work everywhere. The question then becomes: Who or what wrote the code? Here, we enter the realm of metaphysics and theology, as explored in Theogenesis and The Syntellect Hypothesis. Could it be that we, as conscious agents, are co-authors of this universal script, operating within the nested layers of the Omega-God itself?
Now, scientists have found a way to achieve high-fidelity quantum teleportation using logical qubits. The study was led by researchers from Quantinuum, a quantum computing company based in Colorado, USA.
Interesting Engineering (IE) spoke to one of the co-authors of the study, David Hayes, Director of Computation Theory and Design at Quantinuum.
“Quantum teleportation is an important technique that allows quantum information to be moved quickly, enabling fast processing in quantum computation. It’s also used as a benchmark for general progress since it requires several complex operations to work together,” Hayes explained to IE.
Scientists from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and MIT
MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.