Blog

Archive for the ‘bioprinting’ category

Oct 16, 2019

3D Printing Organs is CLOSER thanks to Lulzbot BIO

Posted by in categories: 3D printing, bioprinting, biotech/medical

Bio printing footage provided by College of Engineering, and heart valve footage provided by Regenerative Biomaterials Group, Carnegie Mellon University.
https://regenerativebiomaterials.com/

Lulzbot invited us out to showcase the BIO, their OPEN SOURCE 3D printer capable of 3D bioprinting. Materials like unmodified collagen and fetal stem cells! It’s open source, and launches at a price of $7500 USD.

Continue reading “3D Printing Organs is CLOSER thanks to Lulzbot BIO” »

Sep 27, 2019

Dr. Luis Garza, MD-PhD — Johns Hopkins School of Medicine — Wound Healing and Limb Regeneration — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, bioprinting, biotech/medical, disruptive technology, futurism, genetics, health, life extension, science

Sep 26, 2019

Human Embryoid Research! — Dr. Deborah Gumucio, Ph.D — University of Michigan — ideaXme — Ira Pastor

Posted by in categories: 3D printing, aging, bioengineering, bioprinting, biotech/medical, complex systems, DNA, genetics, health, transhumanism

Sep 13, 2019

Dr. Anthony Atala — Wake Forest School of Medicine — Organ Bio-Printing — IdeaXme Show — Ira Pastor

Posted by in categories: 3D printing, aging, bioengineering, bioprinting, biotech/medical, business, health, life extension, science, transhumanism

Aug 23, 2019

Bioprinting complex living tissue in just a few seconds

Posted by in categories: bioprinting, biotech/medical, engineering

Tissue engineers create artificial organs and tissues that can be used to develop and test new drugs, repair damaged tissue and even replace entire organs in the human body. However, current fabrication methods limit their ability to produce free-form shapes and achieve high cell viability.

Researchers at the Laboratory of Applied Photonics Devices (LAPD), in EPFL’s School of Engineering, working with colleagues from Utrecht University, have come up with an that takes just a few seconds to sculpt complex shapes in a biocompatible hydrogel containing stem . The resulting tissue can then be vascularized by adding endothelial cells.

The team describes this high-resolution printing method in an article appearing in Advanced Materials. The technique will change the way cellular engineering specialists work, allowing them to create a new breed of personalized, functional bioprinted organs.

Aug 12, 2019

Organovo Suspends Liver Bioprinting Program

Posted by in category: bioprinting

Today, we have to share some bad news about Organovo and its liver tissue bioprinting program.

Aug 5, 2019

3D bioprinting breakthrough leads to full-scale, functioning heart parts

Posted by in categories: 3D printing, bioprinting, biotech/medical

While in its early stages, bioprinting of human tissue is an emerging technology that is opening up some exciting possibilities, including the potential to one day 3D print entire human organs. This scientific objective has now grown a little bit closer, with researchers at Carnegie Mellon University reporting a breakthrough that enabled the printing of full-scale heart components that in some cases functioned similarly to the real thing.

Aug 2, 2019

3D printing the human heart

Posted by in categories: 3D printing, bioengineering, bioprinting, biotech/medical

Over 4000 patients in the United States alone are waiting for a heart transplant, while millions of others worldwide need hearts but are ineligible for the waitlist. The need for replacement organs is immense, and new approaches are needed to engineer artificial organs that are capable of repairing, supplementing, or replacing long-term organ function.


A team of researchers from Carnegie Mellon University has published a paper in Science that details a new technique allowing anyone to 3D bioprint tissue scaffolds out of collagen, the major structural protein in the human body. This first-of-its-kind method brings the field of tissue engineering one step closer to being able to 3D print a full-sized, adult human heart.

The technique, known as Freeform Reversible Embedding of Suspended Hydrogels (FRESH), has allowed the researchers to overcome many challenges associated with existing 3D bioprinting methods, and to achieve unprecedented resolution and fidelity using soft and living materials.

Continue reading “3D printing the human heart” »

Jul 6, 2019

A BFF in Space! Bioprinter Will 3D-Print Human Tissue on the Space Station

Posted by in categories: 3D printing, bioprinting, space

The futuristic gizmo will launch this month.

Jun 30, 2019

Dr. Leroy Hood, Co-founder, Chief Strategy Officer, and Professor, Institute for Systems Biology — ideaXme Show — Ira Pastor

Posted by in categories: aging, bioengineering, biological, bioprinting, biotech/medical, business, DNA, genetics, health, life extension
Page 1 of 912345678Last