Toggle light / dark theme

Fast-charging lithium-ion batteries are ubiquitous, powering everything from cellphones and laptops to electric vehicles. They’re also notorious for overheating or catching fire.

Now, with an innovative computational model, a University of Wisconsin–Madison has gained new understanding of a phenomenon that causes lithium-ion batteries to fail.

Developed by Weiyu Li, an assistant professor of mechanical engineering at UW–Madison, the model explains lithium plating, in which fast charging triggers metallic lithium to build up on the surface of a battery’s anode, causing the battery to degrade faster or catch fire.

Qwake Technologies is working with the Department of Homeland Security to test out the device in a real-world environment. 80 fire departments across the country will receive the device to test out. Austin Fire Department and Round Rock Fire Department are both part of this program.

So far, ten of the eighty departments have gotten the technology. Each C-Thru costs about $8,500, which Cossman said is less than the current generation of walkie-talkies used by many departments. The devices are not currently for sale.

“It is the first iPhone for the fire industry. Like this is a watershed moment,” Cossman said.

Did you know that the camera sensor in your smartphone could help unlock the secrets of antimatter? The AEgIS collaboration, led by Professor Christoph Hugenschmidt’s team from the research neutron source FRM II at the Technical University of Munich (TUM), has developed a detector using modified mobile camera sensors to image, in real time, the points where antimatter annihilates with matter.

This new device, described in a paper published in Science Advances, can pinpoint antiproton annihilations with a resolution of about 0.6 micrometers, a 35-fold improvement over previous real-time methods.

AEgIS and other experiments at CERN’s Antimatter Factory, such as ALPHA and GBAR, are on a mission to measure the free-fall of antihydrogen within Earth’s gravitational field with high precision, each using a different technique. AEgIS’s approach involves producing a horizontal beam of antihydrogen and measuring its vertical displacement using a device called a moiré deflectometer that reveals tiny deviations in motion and a detector that records the antihydrogen annihilation points.

Researchers at the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) and at Florida International University report in the journal Science their insights on the emerging field of complex frequency excitations, a recently introduced scheme to control light, sound and other wave phenomena beyond conventional limits.

Based on this approach, they outline opportunities that advance fundamental understanding of wave-matter interactions and usher wave-based technologies into a new era.

In conventional light-wave-and sound-wave-based systems such as wireless cell phone technologies, microscopes, speakers and earphones, control over wave phenomena is limited by constraints, which stem from the fundamental properties of the materials used in these technologies.

Lithium-ion batteries are part of everyday life. They power small rechargeable devices such as mobile phones and laptops. They enable electric vehicles. And larger versions store excess renewable energy for later use, supporting the clean energy transition.

Australia produces more than 3,000 metric tons of lithium-ion battery a year. Managing this waste is a technical, economic and social challenge. Opportunities exist for and creating a circular economy for batteries. But they come with risk.

That’s because contain manufactured chemicals such as PFAS, or per-and polyfluoroalkyl substances. The chemicals carry the lithium—along with electricity—through the battery. If released into the environment, they can linger for decades and likely longer. This is why they’ve been dubbed “forever chemicals

A research team has developed the world’s first smartphone-type OLED panel that can freely transform its shape while simultaneously functioning as a speaker—all without sacrificing its ultra-thin, flexible properties.

The study, led by POSTECH’s (Pohang University of Science and Technology) Professor Su Seok Choi from the Department of Electrical Engineering and conducted by Ph.D. candidates Jiyoon Park, Junhyuk Shin, Inpyo Hong, Sanghyun Han, and Dr. Seungmin Nam, was published in the March online edition of npj Flexible Electronics.

As the industry rapidly advances toward flexible technologies—bendable, foldable, rollable, and stretchable—most implementations still rely on mechanical structures such as hinges, sliders, or motorized arms. While these allow for shape adjustment, they also result in increased thickness, added weight, and limited form factor design. These drawbacks are particularly restrictive for smartphones and wearable electronics, where compactness and elegance are critical.

A new study published in Frontiers in Computer Science investigated if placing smartphones just out of our reach while we’re at work influenced device use for activities not related to work.

“The study shows that putting the smartphone away may not be sufficient to reduce disruption and procrastination, or increase focus,” said the paper’s author Dr. Maxi Heitmayer, a researcher at the London School of Economics. “The problem is not rooted within the device itself, but in the habits and routines that we have developed with our devices.”

Researchers from the National University of Singapore (NUS) have demonstrated that a single, standard silicon transistor, the fundamental building block of microchips used in computers, smartphones and almost every electronic system, can function like a biological neuron and synapse when operated in a specific, unconventional way.

Led by Associate Professor Mario Lanza from the Department of Materials Science and Engineering at the College of Design and Engineering, NUS, the research team’s work presents a highly scalable and energy-efficient solution for hardware-based (ANNs).

This brings —where chips could process information more efficiently, much like the —closer to reality. Their study was published in the journal Nature.

Imagine navigating a virtual reality with contact lenses or operating your smartphone underwater: This and more could soon be a reality thanks to innovative e-skins.

A research team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has developed an that detects and precisely tracks magnetic fields with a single global sensor. This artificial skin is not only light, transparent and permeable, but also mimics the interactions of real skin and the brain, as the team reports in the journal Nature Communications.

Originally developed for robotics, e-skins imitate the properties of real skin. They can give robots a or replace lost senses in humans. Some can even detect chemical substances or magnetic fields. But the technology also has its limits. Highly functional e-skins are often impractical because they rely on extensive electronics and large batteries.

Imagine never charging your phone again or having a pacemaker that lasts a lifetime. Scientists are developing tiny nuclear batteries powered by radiocarbon, a safe and abundant by-product of nuclear plants.

Unlike lithium-ion batteries, which degrade over time and harm the environment, these new designs use beta radiation to trigger an electron avalanche and generate electricity. The team’s latest prototype vastly improved efficiency, and though challenges remain, the technology could one day make nuclear power as accessible as your pocket device.

The Problem with Current Batteries.