Millions of years of evolution have enabled some marine animals to grow complex protective shells composed of multiple layers that work together to dissipate physical stress. In a new study, engineers have found a way to mimic the behavior of this type of layered material, such as seashell nacre, by programming individual layers of synthetic material to work collaboratively under stress. The new material design is poised to enhance energy-absorbing systems such as wearable bandages and car bumpers with multistage responses that adapt to collision severity.
Many past studies have focused on reverse engineering to replicate the behavior of natural materials like bone, feathers and wood to reproduce their nonlinear responses to mechanical stress. A new study, led by the University of Illinois Urbana-Champaign civil and environmental engineering professor Shelly Zhang and professor Ole Sigmund of the Technical University of Denmark, looked beyond reverse engineering to develop a framework for programmable multilayered materials capable of responding to local disturbances through microscale interconnections.
The study findings are published in the journal Science Advances.
Wearable technologies are revolutionizing health care, but design limitations in adhesive-based personal monitors have kept them from meeting their full potential.
A new University of Arizona study, published in Nature Communications, describes a longer-lasting, 3D-printed, adhesive-free wearable capable of providing a more comprehensive picture of a user’s physiological state.
The device, which measures water vapor and skin emissions of gases, continuously tracks and logs physiological data associated with dehydration, metabolic shifts and stress levels.
Inorganic semiconductors form the backbone of modern electronics due to their excellent physical properties, including high carrier mobility, thermal stability, and well-defined energy band structures, which enable precise control over electrical conductivity. Unfortunately, their intrinsic brittleness has traditionally required the use of costly, complex processing methods like deposition and sputtering—which apply inorganic materials to rigid substrates and limit their suitability for flexible or wearable electronics.
Now, however, a recent breakthrough by researchers from the Shanghai Institute of Ceramics of the Chinese Academy of Sciences and Shanghai Jiao Tong University in the warm processing of traditionally brittle semiconductors offers tremendous potential to expand applications for inorganic semiconductors into these fields.
In their study recently published in Nature Materials, the researchers report achieving plastic warm metalworking in a range of inorganic semiconductors traditionally considered too brittle for such processing. These findings open new avenues for efficient and cost-effective semiconductor manufacturing.
It’s easy to take joint mobility for granted. Without thinking, it’s simple enough to turn the pages of a book or bend to stretch out a sore muscle. Designers don’t have the same luxury. When building a joint, be it for a robot or wrist brace, designers seek customizability across all degrees of freedom but are often restricted by their versatility to adapt to different use contexts.
Researchers at Carnegie Mellon University’s College of Engineering have developed an algorithm to design metastructures that are reconfigurable across six degrees of freedom and allow for stiffness tunability. The algorithm can interpret the kinematic motions that are needed for multiple configurations of a device and assist designers in creating such reconfigurability. This advancement gives designers more precise control over the functionality of joints for various applications.
The team demonstrated the structure’s versatile capabilities via multiple wearable devices tailored for unique movement functions, body areas, and uses.
Scientists have discovered a way to use live tissue as a computational reservoir to solve problems and potentially predict chaotic systems like the weather.
Northwestern University engineers have developed a pacemaker so tiny that it can fit inside the tip of a syringe — and be non-invasively injected into the body.
Smaller than a single grain of rice, the pacemaker is paired with a small, soft, flexible, wireless, wearable device that mounts onto a patient’s chest to control pacing. When the wearable device detects an irregular heartbeat, it automatically shines a light pulse to activate the pacemaker. These short pulses— which penetrate through the patient’s skin, breastbone and muscles — control the pacing. #Repost
Although it can work with hearts of all sizes, the pacemaker is particularly well-suited to the tiny, fragile hearts of newborn babies with congenital heart defects.
Designed for patients who only need temporary pacing, the pacemaker simply dissolves after it’s no longer needed. All the pacemaker’s components are biocompatible, so they naturally dissolve into the body’s biofluids, bypassing the need for surgical extraction.
Noninvasive therapy seeks to enhance focus and behavior by gently stimulating a nerve associated with attention and executive functioning. Researchers at UCLA Health are initiating the first clinical trial to determine whether a wearable device that provides gentle nerve stimulation during sleep
Just one look at the next-generation lightweight, soft exoskeleton for children with cerebral palsy reveals the powerful role technology can play in solving global challenges and improving lives.
Built to help children walk, MyoStep addresses motor impairments that severely restrict children’s participation in physical activities, self-care and academic pursuits, leading to developmental delays, social isolation and reduced self-esteem. It is lightweight, discreet, made of smart materials and wearable technology, and tailored to fit seamlessly into the lives of children and their families.
The MyoStep soft exoskeleton is introduced in IEEE Electron Devices Magazine by a team from the NSF UH Building Reliable Advances and Innovation in Neurotechnology (BRAIN) Center, an Industry–University Cooperative Research Center (IUCRC) and TIRR Memorial Hermann.