Toggle light / dark theme

Among the mountains of evidence that climate change is warming Earth faster than any other point in recorded history is the fact that most glaciers around the world are shrinking or disappearing. Melting glaciers and ice sheets are already the biggest contributors to global sea level rise, and according to the World Glacier Monitoring Service, ice loss rates have increased each decade since 1970. Yet, of the approximately 200,000 glaciers in the world currently, no database exists to identify which glaciers have disappeared, and when. The Global Land Ice Measurements from Space (GLIMS) initiative, an international project designed to monitor the world’s glaciers primarily using data from optical satellite instruments, aims to change that.

“Glaciers are indicators of climate change because they grow and shrink on longer timescales than rapidly changing weather, so they give a clearer signal about climate,” said Bruce Raup, a senior associate scientist at the National Snow and Ice Data Center (NSIDC) and director of the GLIMS initiative. “We know that glaciers are disappearing, but we’ve had no way to show that to people. So, we are making an effort to document glaciers that have disappeared and approximately when they disappeared.”

Don’t judge space junk’s potential for destruction using your Earthly instincts: Traveling at tens of thousands of miles per hour in space, even a small object has the potential to inflict major damage. In one incident that demonstrates that fact of physics, a 2mm piece of space once junk put a 5cm-wide dent in a climate satellite. A modest move up the scale brings much more power: “A one-centimeter piece of debris has the energy of a hand grenade,” ESA’s Tiago Soares told DW.

In an ominous 2009 incident, a Russian Cosmos satellite collided with an Iridium satellite, creating a cloud of about 2,000 pieces of junk measuring 10cm or more. That’s brings us to the nightmare scenario that should fill you with dread: The Kessler Effect. Imagine an initial major impact that creates hundreds of shards, which then start colliding with more orbiting objects, setting off a chain reaction. Actually, you don’t need your imagination. While some scientists say it wasn’t fully accurate in depicting the physics, Hollywood ventured to depict the Kessler Effect in the 2013 movie, Gravity:

The world added the smallest amount of new coal capacity in two decades last year, a report said Thursday, but use of the fossil fuel is still surging in China and India.

Coal accounts for just over a third of global electricity production and phasing it out is fundamental to meeting climate change goals.

Just 44 gigawatts (GW) of new capacity was produced globally last year, the lowest figure since 2004, according to the report by a group of energy-and environment-focused research organizations and NGOs.

The European Center for Medium-Range Weather Forecasts (ECMWF) has fully operationalized its AI Forecasting System (AIFS), achieving up to 20% greater accuracy than traditional methods, particularly in tropical cyclone tracking.

A new study published in Proceedings of the National Academy of Sciences has turned traditional thinking on its head by highlighting the role of human interactions during the shift from hunting and gathering to farming—one of the biggest changes in human history—rather than earlier ideas that focused on environmental factors.

The transition from a foraging lifestyle, which humanity had followed for hundreds of thousands of years, to a settled farming one about 12,000 years ago has been widely discussed in popular books like “Sapiens: A Brief History of Humankind” by Yuval Noah Harari.

Researchers from the University of Bath, the Max Planck Institute for Evolutionary Anthropology in Germany, the University of Cambridge, UCL, and others have developed a new mathematical model that challenges the traditional view that this major transition was driven by external factors, such as climate warming, increased rainfall, or the development of fertile river valleys.

Deep in the galaxy’s central molecular zone (CMZ), surrounding the supermassive black hole at the Milky Way’s center, clouds of dust and gas swirl amid energetic shock waves.

Now, a collaboration of international astronomers – using the Atacama Large Millimeter/submillimeter Array (ALMA) – has greatly sharpened our view of these processes by a factor of 100.

The team has uncovered an unexpected class of long, narrow filaments within this turbulent region, giving fresh insight into the cyclical formation and destruction of material in the CMZ.

Physicists in Germany have led experiments that show the inertia of electrons can form ‘tornadoes’ inside a quantum semimetal.

It’s almost impossible for electrons to sit still, and their motions can take on some bizarre forms. Case in point: an analysis of electron behavior in a quantum material called tantalum arsenide reveals vortices.

But the story gets weirder. These electrons aren’t spiraling in a physical place – they’re doing so in a quantum blur of possibility called momentum space. Rather than drawing a map of particles potential locations, or position space, momentum space describes their motion through their energy and direction.

Cargo transport is responsible for an enormous carbon footprint. Between 2010 and 2018, the transport sector generated about 14% of global greenhouse gas emissions. To address this problem, experts are looking for alternative, climate-friendly solutions—not only for road transport, but also for shipping, a sector in which powering cargo ships with batteries has proved especially difficult.

One promising but under-researched solution involves small, autonomous, hydrogen-powered boats that can partially replace long-haul trucking. A research team led by business chemist Prof Stephan von Delft from the University of Münster has now examined this missing link in a new study published in Communications Engineering.

The team has mathematically modeled such a boat for the first time and carried out a - and cost analysis. “Our calculations show in which scenarios hydrogen-powered boats are not only more sustainable but also more economical compared to established transport solutions,” explains von Delft. “They are therefore relevant for policymakers and industry.”