Toggle light / dark theme

Deep in the swamps of the American Southeast stands a quiet giant: the bald cypress (Taxodium distichum). These majestic trees, with their knobby “knees” and towering trunks, are more than just swamp dwellers—they’re some of the oldest living organisms in Eastern North America. Some have been around for more than 2,500 years, quietly thriving in nutrient-poor, flooded forests where most other trees would wither.

But life isn’t easy for these ancient . They’re under siege from a variety of threats: rising seas, insect infestations, wildfires and increasingly erratic weather patterns. Unlike most animals, trees generally don’t die of old age—they succumb to the stresses around them.

A study by Florida Atlantic University, in collaboration with Lynn University, the University of Georgia, the Georgia Department of Natural Resources, and the Georgia Museum of Natural History, reveals how dramatic shifts in climate can have long-lasting effects on even the toughest, most iconic trees—and offers a glimpse into the powerful forces that shape our natural world.

Physicists at the University of Oxford have set a new global benchmark for the accuracy of controlling a single quantum bit, achieving the lowest-ever error rate for a quantum logic operation—just 0.000015%, or one error in 6.7 million operations. This record-breaking result represents nearly an order of magnitude improvement over the previous benchmark, set by the same research group a decade ago.

To put the result in perspective: a person is more likely to be struck by lightning in a given year (1 in 1.2 million) than for one of Oxford’s quantum logic gates to make a mistake.

The findings, to be published in Physical Review Letters, are a major advance towards having robust and useful quantum computers.

With careful planning and a little luck, researchers found a surprising upside to hurricanes after a Category 4 storm disrupted their expedition off the coast of Mexico.

The team was able to sample the ocean right after the storm passed and found that the storms churn the ocean so powerfully and deeply—up to thousands of meters—that nutrient-rich, is brought to the surface.

The resulting phytoplankton blooms—visible in taken from space—are a feast for bacteria, zooplankton, small fish, and filter-feeding animals such as shellfish and baleen whales.

This high energy output could vastly improve the world’s sustainability. With fusion, energy would be near-limitless and thus easily accessible and substantially more affordable. People could enjoy lower utility bills and consistent, reliable energy.

Watch now: How bad is a gas stove for your home’s indoor air quality?

The innovative reactor would help slow down climate change and lead to a cleaner, cooler future, while helping people save money and access clean energy. Reducing energy pollution will benefit every human, reducing the health hazards of breathing polluted air or drinking contaminated water.

Seasonality shapes much of life on Earth. Most species, including humans, have synchronized their own rhythms with those of the Earth’s seasons.

Plant growth cycles, the migration of billions of animals, and even aspects of human culture—from harvest rituals to Japanese cherry blossom viewings—are dictated by these dominant rhythms.

However, climate change and many other human impacts are altering Earth’s cycles. While humans can adapt their behavior by shifting the timing of crop harvests or Indigenous fire-burning practices, species are less able to adapt through evolution or range shifts.

Unlike fish, jellyfish lack bones and possess a sole rudimentary nerve net, yet they can travel considerable distances with minimal energy expenditure. A jellyfish’s seemingly effortless glide through the water is thanks to a ring of muscle within its soft belly, which creates a simple jet that propels it forward. Scientists refer to this intrinsic capability as “embodied intelligence,” which suggests that the organism’s physical structure plays a role in problem-solving.

When harnessed, this locomotion provides an efficient means to monitor , track , and observe climate trends. “Jellyfish cyborgs” require minimal power and operate without engines, limiting the environmental impact associated with current methods of studying the vast expanse of the ocean.

In a new study, a research team, led by Dai Owaki, an associate professor in the Department of Robotics at Tohoku University’s Graduate School of Engineering, successfully modulated the swimming behavior of using gentle electric pulses. Moreover, they utilized a lightweight artificial intelligence (AI) model to predict the swimming speed of each jellyfish.

Munich, 4 June 2024 – According to the World Wildlife Fund (WWF), the pulp and paper industry is one of the largest industrial sectors in the world and has an enormous influence on global forests. This sector accounts for 13–15% of total wood consumption and uses between 33–40% of all industrial wood traded globally. In search of more sustainable solutions for paper production, 23-year-old Ukrainian inventor Valentyn Frechka developed a method for recycling leaf litter into paper. Frechka is a finalist for the Young Inventors Prize of the European Inventor Award 2024, in recognition of his promising work towards a circular economy and addressing one of the United Nations’ Sustainable Development Goals (SDGs). He was selected from over 550 candidates for this year’s edition.

Using new technology to recycle fallen leaves into paper

The global loss of trees is known to significantly exacerbate climate change, increasing air pollution levels, causing the loss of biodiversity, and disrupting the water cycle. Global warming also leads to issues such as soil erosion and reduced freshwater availability. It also increases costs for managing environmental problems such as flooding.

Microsoft has developed an artificial intelligence (AI) model that beats current forecasting methods in tracking air quality, weather patterns, and climate-addled tropical storms, according to findings published Wednesday.

Dubbed Aurora, the new system—which has not been commercialized—generated 10-day weather forecasts and predicted hurricane trajectories more accurately and faster than traditional forecasting, and at lower costs, researchers reported in the journal Nature.

“For the first time, an AI system can outperform all operational centers for hurricane forecasting,” said senior author Paris Perdikaris, an associate professor of mechanical engineering at the University of Pennsylvania.