Toggle light / dark theme

Cognition all the way down 2.0: neuroscience beyond neurons in the diverse intelligence era

This paper formalizes biological intelligence as search efficiency in multi-scale problem spaces, aiming to resolve epistemic deadlocks in the basal “cognition wars” unfolding in the Diverse Intelligence research program. It extends classical work on symbolic problem-solving to define a novel problem space lexicon and search efficiency metric. Construed as an operationalization of intelligence, this metric is the decimal logarithm of the ratio between the cost of a random walk and that of a biological agent. Thus, the search efficiency measures how many orders of magnitude of dissipative work an agentic policy saves relative to a maximal-entropy search strategy. Empirical models for amoeboid chemotaxis and barium-induced planarian head regeneration show that, under conservative (i.e.

Cancer tumors may protect against Alzheimer’s by cleaning out protein clumps

Cancer and Alzheimer’s are two of the most common chronic diseases associated with aging. For years, doctors have known about a curious aspect of these two conditions: people who survive cancers are significantly less likely to develop Alzheimer’s. While this link has been observed in the data for some time, the biological reasons for it have remained a mystery. Now, a new study published in the journal Cell has discovered a possible explanation.

In the Alzheimer’s brain, abnormal levels of a naturally occurring protein called amyloid-beta clump together to form plaques. The plaques disrupt communication between brain cells, eventually leading to cognitive decline and memory loss. Current medicines struggle to remove these clumps, but this new research suggests that cancer might be sending in a biological cleanup crew.

To see whether and how cancer provides this protection, researchers at the Huazhong University of Science and Technology in China used advanced mouse models of Alzheimer’s disease. They transplanted three types of tumors (lung, colon and prostate cancer) into the mice and found that the amyloid plaques in their brains shrank significantly.

Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

The musk blueprint: navigating the supersonic tsunami to hyperabundance when exponential curves multiply: understanding the triple acceleration.

On January 22, 2026, Elon Musk sat down with BlackRock CEO Larry Fink at the World Economic Forum in Davos and delivered what may be the most important articulation of humanity’s near-term trajectory since the invention of the internet.

Not because Musk said anything fundamentally new—his companies have been demonstrating this reality for years—but because he connected the dots in a way that makes the path to hyperabundance undeniable.

[Watch Elon Musk’s full WEF interview]

This is not visionary speculation.

This is engineering analysis from someone building the physical infrastructure of abundance in real-time.

Can Aging Be Measured—and Eventually Reversed?

A former professor at the University of California, Los Angeles, Horvath is now principal investigator of the U.K. research arm of Altos Labs, a longevity biotech company that says it is developing therapies that could reverse age-related diseases and disabilities.

Having precise and meaningful ways to measure aging could make it possible for drug developers like Altos Labs to test longevity treatments in people, Horvath says: “It’s a quintessential tool to find interventions for rejuvenation.”

As part of TIME’s series interviewing longevity leaders and influencers, we spoke to Horvath about his pioneering invention and what he thinks might be possible for human life extension.

The human advantage: Stronger brains in the age of AI

Stronger brains strengthen resilience, productivity, and shared prosperity. It is time to invest accordingly.

The brain is the body’s most complex and vital organ, regulating everything from basic life functions to complex decision-making. It is also the foundation of how people live, work, and connect, making it central to individual well-being, high-performing organizations, and resilient economies. Despite rapid technological advances, nothing yet replicates the brain’s capacity to contribute to society.

AI will reshape work, and competitiveness will hinge on combining human and machine strengths. Countries and companies must evolve their strategies to enable collaboration and harness the complementary strengths of human intelligence and technology, or risk slower growth and being left behind in the next era of the global economy. And while the stakes are high if we fail to invest in the health of our brains and the skills that make us uniquely human, the potential gains—individually, socially, and economically—are even greater if we choose to do so.

In this report, brain health is defined as a state of optimal brain functioning, supported by the promotion of healthy brain development and the prevention or treatment of mental, neurological, and substance use disorders in people of all ages. But health alone is not enough. Brain skills—the foundational cognitive, interpersonal, self-leadership, and technological literacy abilities that enable people to adapt, relate, and contribute meaningfully—are equally critical to societal progress. Together, these form what is called brain capital.

Underinvestment in the brain has a substantial cost. The global disease burden of brain health conditions is rising, driven by an aging population, increased stressors, and elevated uncertainty about the future. When societies overlook the brain’s central role in health and productivity, the impact is felt in disrupted lives, lost potential, and a heavy toll on families and caregivers. Scaling cost-effective interventions to prevent, treat, and help people recover from brain health conditions could avert 267 million disability-adjusted life years (DALYs) globally by 2050, generating up to $6.2 trillion in cumulative GDP gains.1 Investing early can create even greater returns—quality early-childhood programs have demonstrated annual returns of 7 to 13 percent and delivered benefit-to-cost ratios of up to nine to one in low-and middle-income countries.

In this report by the McKinsey Health Institute, in collaboration with the World Economic Forum, the authors make the case for investing in the brain, introduce five levers for action, and offer a road map for next steps. While specific actions may vary by stakeholder, region, or sector, there is a need for a shared aspiration and framework for change. This report aims to fill that gap.

“ (

Distinct SOX9 single-molecule dynamics characterize adult differentiation and fetal-like reprogrammed states in intestinal organoids

New organoid research published in Stem Cell Reports:

Cell press | gairdner foundation | sickkids foundation | california institute for regenerative medicine | uni bayreuth.


Walther and colleagues employed an automated live-cell single-molecule tracking pipeline to study the diffusive behavior of the transcription factor SOX9 during adult differentiation and fetal-like reprogrammed states in intestinal organoid models. The authors linked distinct fractions of chromatin-bound SOX9 molecules to specific cellular states in enteroid monolayers, thereby paving the way to unravel molecular mechanisms underlying differentiation and organoid phenotypes.

Population-level age effects on the white matter structure subserving cognitive flexibility in the human brain

New in eNeuro from Wolfe et al: Brain structures related to shifting between tasks or updating information about the environment show signs of deterioration in late adulthood.

▶️


Cognitive flexibility, a mental process crucial for adaptive behavior, involves multi-scale functioning across several neuronal organization levels. While the neural underpinnings of flexibility have been studied for decades, limited knowledge exists about the structure and age-related differentiation of the white matter subserving brain regions implicated in cognitive flexibility. This study investigated the population-level relationship between cognitive flexibility and properties of white matter across two periods of human adulthood, aiming to discern how these associations vary over different life stages and brain tracts among men and women. We propose a novel framework to study age effects in brain structure-function associations. First, a meta-analysis was conducted to identify neural regions associated with cognitive flexibility. Next, the white matter projections of these neural regions were traced through the Human Connectome Project tractography template to identify the white matter structure associated with cognitive flexibility. Then, a cohort analysis was performed to characterize myelin-related macromolecular features using a subset of the UK Biobank magnetic resonance imaging (MRI) data, which has a companion functional/behavioral dataset. We found that the wiring of cognitive flexibility is defined by a subset of brain tracts, which present undifferentiated features early in adulthood and significantly differentiated types in later life. These MRI-derived properties are correlated with individual subprocesses of cognition, which are closely related to cognitive flexibility function. In late life, myelin-related homogeneity of specific white matter tracts implicated in cognitive flexibility declines with age, a phenomenon not observed in early life. Our findings support the age-related differentiation of white matter tracts implicated in cognitive flexibility as a natural substrate of adaptive cognitive function.

Significance Statement Cognitive flexibility function facilitates adaptation to environmental demands. Brain changes affecting structural organization during the lifespan are theorized to impact cognitive flexibility. This study characterizes how the brain’s connectivity is correlated with cognitive flexibility function throughout adulthood. By analyzing myelin-related properties of white matter, this study found that certain parts of the brain’s wiring related to cognitive flexibility become more differentiated with advanced age. These age-related features appear as a natural characteristic of the human brain that may impact specific aspects of adaptive thinking, like shifting between tasks or updating information.

Different gametogenesis states uniquely impact longevity in Caenorhabditis elegans

In Caenorhabditis elegans, ablation of germline stem cells leads to extended lifespan and increased fat storage. Here the authors show that disrupting distinct gametogenesis programs and germline progression in C. elegans triggers molecular responses that affect fat metabolism, stress resilience, and lifespan.

/* */