Archive for the ‘life extension’ category

Nov 24, 2020

Sestrin makes fruit flies live longer

Posted by in categories: biotech/medical, food, life extension

10% longer.

Reduced food intake, known as dietary restriction, leads to a longer lifespan in many animals and can improve health in humans. However, the molecular mechanisms underlying the positive effects of dietary restriction are still unclear. Researchers from the Max Planck Institute for Biology of Aging have now found one possible explanation in fruit flies: they identified a protein named Sestrin that mediates the beneficial effects of dietary restriction. By increasing the amount of Sestrin in flies, researchers were able to extend their lifespan and at the same time these flies were protected against the lifespan-shortening effects of a protein-rich diet. The researchers could further show that Sestrin plays a key role in stem cells in the fly gut thereby improving the health of the fly.

The health benefits of have long been known. Recently, it has become clear that restriction of certain food components, especially proteins and their individual building blocks, the , is more important for the organism’s response to dietary restriction than general calorie reduction. On the , one particular well-known signaling pathway, named TOR pathway, is important for longevity.

Continue reading “Sestrin makes fruit flies live longer” »

Nov 24, 2020

Media Circus Surrounds Hyperbaric Oxygen Study

Posted by in categories: life extension, neuroscience

Important that people read this given how much this spread.

If you have been following the mainstream media recently, you have probably seen a story about hyperbaric oxygen treatment and claims that it can reverse aging. Unfortunately, the media hype surrounding the results is nothing like the reality of the actual research paper, and this is another example of how shoddy journalism harms our field.

Welcome to the media circus

Continue reading “Media Circus Surrounds Hyperbaric Oxygen Study” »

Nov 23, 2020

The True (If Circuitous) Path to Stem Cell Cures

Posted by in categories: biotech/medical, life extension

Stem cells hold so much potential for regenerative medicine, it is understandable that so many people should be so impatient to see all that potential realized. But people, the desperately ill among them, need to recognize that stem cells aren’t talismans. In unregulated clinical settings, stem cells can be worthless or even harmful. That’s the bad news. The good news is that stem cells are giving up their profound but decidedly unmagical secrets.

What stem cells lose in mystery, they gain in practicality. They are to be seen as manageable biological units that can, given the right preparation, perform myriad therapeutic applications, less as miracle workers and more as drudges that accept reprogramming and subsequently perform their assigned tasks. They may also sacrifice some of their protean identity, turning into cells that are less stemmy but more effective (and safer) as therapeutic agents. Stemminess may even by bypassed completely, as when cells of one type are directly transdifferentiated into cells of another type.

Even as the preparation of stem cell therapeutics becomes more sophisticated, it is becoming more streamlined, more industrialized. Helping to advance both trends—greater refinement, greater manufacturability—is a new generation of biotech startups. Several of these startups are described in this article. By commercializing the latest stem cell technologies, these startups mean to add to the list of FDA-approved cell-based treatments.

Continue reading “The True (If Circuitous) Path to Stem Cell Cures” »

Nov 22, 2020

Researchers improve neuronal reprogramming

Posted by in categories: biotech/medical, life extension, neuroscience

The replacement of lost neurons is a holy grail for neuroscience. A new promising approach is the conversion of glial cells into new neurons. Improving the efficiency of this conversion or reprogramming after brain injury is an important step towards developing reliable regenerative medicine therapies. Researchers at Helmholtz Zentrum München and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism. By expressing neuron-enriched mitochondrial proteins at an early stage of the direct reprogramming process, the researchers achieved a four times higher conversion rate and simultaneously increased the speed of reprogramming.

Neurons (nerve cells) have very important functions in the brain such as information processing. Many brain diseases, injuries and neurodegenerative processes, are characterized by the loss of neurons that are not replaced. Approaches in regenerative medicine therefore aim to reconstitute the neurons by transplantation, stem cell differentiation or direct conversion of endogenous non-neuronal cell types into functional neurons.

Researchers at Helmholtz Zentrum München and LMU are pioneering the field of direct conversion of glial cells into neurons which they have originally discovered. Glia are the most abundant cell type in the brain and can proliferate upon injury. Currently, researchers are able to convert glia cells into neurons — but during the process many cells die. This means that only few glial cells convert into functional nerve cells, making the process inefficient.

Nov 21, 2020

Israeli scientists say found a way to reverse the human aging process

Posted by in category: life extension

“We are going backwards in time,” Prof. Shai Efrati said.

Nov 21, 2020

An Interview with David Ettinger on the Cryonics Institute (Detroit)

Posted by in categories: cryonics, life extension, media & arts

Nov 20, 2020

Can damage repair give us indefinite youth? | Dr Aubrey de Grey

Posted by in categories: biotech/medical, law, life extension

In the third episode of the Healthy Longevity webinar series, we hear from Dr Aubrey de Grey, Chief Science Officer of the SENS Research Foundation as he joins Prof Brian Kennedy for a science-backed and inspirational conversation on regenerative medicine and the implications of a population that lives longer and in good health.

Register for upcoming webinar episodes here:

Continue reading “Can damage repair give us indefinite youth? | Dr Aubrey de Grey” »

Nov 20, 2020

It Sure Looks Like Humans Have Found a Way to Reverse Aging

Posted by in categories: bioengineering, biotech/medical, life extension

A landmark study shows this age-old tech is the key.

The cure for aging has long been the Holy Grail of medicine. Emerging technologies, like the gene editing tool CRISPR, have opened the floodgates to what may be possible for the future of medical science. The key to slowing down aging, however, may lie in a simple and age-old technique.

Dive deeper. ➡ Read best-in-class health, tech, and science features, and get unlimited access to Pop Mech.

Continue reading “It Sure Looks Like Humans Have Found a Way to Reverse Aging” »

Nov 20, 2020

Getting it just right: The Goldilocks model of cancer

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Senescence in cancer cells


Sometimes, too much of a good thing can turn out to be bad. This is certainly the case for the excessive cell growth found in cancer. But when cancers try to grow too fast, this excessive speed can cause a type of cellular aging that actually results in arrested growth. Scientists at Duke-NUS Medical School have now discovered that a well-known signaling pathway helps cancers grow by blocking the pro-growth signals from a second major cancer pathway.

Continue reading “Getting it just right: The Goldilocks model of cancer” »

Nov 20, 2020

Hybrid 3D-printing bioinks help repair damaged knee cartilage

Posted by in categories: 3D printing, bioprinting, biotech/medical, life extension

This may be good news for those who have damaged joints due to sports or old age.


Human knees are notoriously vulnerable to injury or wearing out with age, often culminating in the need for surgery. Now researchers have created new hybrid bioinks that can be used to 3D print structures to replace damaged cartilage in the knee.

Continue reading “Hybrid 3D-printing bioinks help repair damaged knee cartilage” »

Page 1 of 36312345678Last