Toggle light / dark theme

Exploring the role of intestinal pathogenic bacteria in metronidazole-induced bone loss: focus on Klebsiella variicola

Osteoporosis (OP), characterized by low bone mass and altered bone microstructure, affects over 200 million people globally, resulting in annual medical costs of approximately 17.9 billion dollars in USA and 37 billion euro per year in Europe [1]. Primary OP is primarily attributed to aging and postmenopausal estrogen deficiency [2]. However, more than half of patients diagnosed with osteoporosis are also associated with risk factors for secondary osteoporosis [3]. Pharmacological interventions are a significant contributor to bone loss, particularly as such treatments are often unavoidable in many clinical scenarios. Antibiotics, among the most prescribed medications worldwide, have long been used as a potent defense against infectious agents. However, their use has steadily increased to a level that raises significant concerns [4]. In addition to fostering antibiotic resistance, which can lead to more challenging infections, prolonged antibiotic use has been implicated in the development of a variety of conditions, including asthma, allergies, obesity, and inflammatory bowel disease [5]. Previous studies have demonstrated the effects of antibiotics like penicillin and neomycin on gut microbiota and bone metabolism [6, 7], and others have reported that systemic use of multiple antibiotics increases pathogenic bacterial abundance and oral bone loss [8]. Nevertheless, the effects of different classes of antibiotics on bone metabolism and their underlying mechanisms remain poorly understood.

Notably, it has been increasingly recognized that broad-spectrum antibiotics exert a detrimental impact on the gut microbiota (GM), leading to reduced diversity, alterations in the metabolome, and disruption of gut defenses [9]. GM dysbiosis has emerged as a significant pathological mechanism in antibiotic-induced extraintestinal diseases. Recent studies have provided growing evidence that GM alterations can significantly influence bone metabolism, suggesting that the microbiota may represent a potential target for preventing bone loss [10]. Certain gut probiotics, such as Lactobacillus and Akkermansia muciniphila, have been shown to promote bone mass, while some pathogenic bacteria contribute to bone loss [11]. Consequently, it is essential to investigate whether and how GM dysbiosis mediates antibiotic-induced bone loss.

Metronidazole (MET), a widely used drug for the treatment of anaerobic infections, parasites, and certain bacterial infections, is one of the most commonly prescribed antibiotics in clinical practice [12]. MET is generally well tolerated, with reported side effects typically ranging from mild to moderate, including nausea, abdominal pain, and diarrhea [13]. Recent studies have highlighted the critical associations between MET use and gut dysbiosis. A systematic review summarizing 129 studies related to antibiotics and GM has showed that the longest duration of post-antibiotic alterations in GM was observed after treatment with MET plus clarithromycin [14]. Another study investigating the effects of different antibiotics on the human microbiome have identified that MET treatment is associated with consistent changes in GM [15].

How Two Russian Scientists Revolutionized the Way We Understand Aging and Cancer

A new article reflects on how two generations of scientists reshaped thinking on aging, linking hormonal regulation in the brain to molecular growth pathways. Mikhail Blagosklonny spent his career arguing that aging is not slow decay, but biology stuck in “overdrive.” Only now is it becoming wide

Aging midbrain neurons face energy crisis linked to Parkinson’s

Dopamine neurons in a part of the brain called the midbrain may, with aging, be increasingly susceptible to a vicious spiral of decline driven by fuel shortages, according to a study led by Weill Cornell Medicine investigators. The findings offer a potential explanation for the degeneration of this neuron population in Parkinson’s disease.

In the study, published Dec. 5 in the Proceedings of the National Academy of Sciences, the scientists examined how midbrain dopamine neurons, which have unusually numerous output branches, handle their high energy requirements. They showed that these neurons under normal conditions create a fuel reserve in the form of clusters of glucose molecules called glycogen. This allows the neurons to keep working for a surprisingly long time even when their usual supply of glucose from the blood is interrupted. However, the researchers also discovered that the neurons regulate their glycogen storage in a way that can leave them highly vulnerable to glucose shortages, especially as their functions begin to decline with aging.

“This vulnerability may explain the deaths of these midbrain neurons in Parkinson’s and is consistent with the idea that energy insufficiency is a common failure mode in neurological disorders,” said study senior author Timothy Ryan, the Tri-Institutional Professor of Biochemistry and Biophysics and a professor of biochemistry in anesthesiology at Weill Cornell Medicine.

DAP12 deletion reduces neuronal SLIT2 and demyelination and enhances brain resilience in female tauopathy mice

How DAP12 deletion enhances brain resilience in female tauopathy mice.

Microglia selectively expresses DAP12 (DNAX-activation protein 12), which, plays a crucial role in microglial immune responses.

Previously, it was show that tauopathy mice lacking DAP12 exhibit higher tau pathology but are protected from tau pathology-induced cognitive deficits but the mechanism remains elusive.

The authors in this study show that tau processing in primary microglia is reduced by Dap12 deletion, while, tau pathology increased in female tauopathy mice, with minimal effects on males. However, brain inflammation, synapse loss, and demyelination are reduced by Dap12 deletion indicating enhanced resilience to tau toxicity.

The authors also show that elevated SLIT2 levels and demyelination in tauopathy and is reversed by Dap12 deletion. The author s also found correlation of SLIT2 expression and tau pathology in AD brain tissue. https://sciencemission.com/DAP12-deletion-reduces-neuronal-SLIT2


Background Pathogenic tau accumulation drives neurodegeneration in Alzheimer’s disease (AD). Enhancing the aging brain’s resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12), highly and selectively expressed by microglia, plays a crucial role in microglial immune responses. Previous studies have shown that tauopathy mice lacking DAP12 exhibit higher tau pathology but are protected from tau pathology-induced cognitive deficits. However, the exact mechanism behind this resilience remains elusive. Methods We investigated the effects of DAP12 deletion on tau pathology, as well as tau-induced brain inflammation and neurodegeneration, in homozygous human Tau P301S transgenic mice. In addition, we conducted single-nucleus RNA sequencing of hippocampal tissues to examine cell type-specific transcriptomic changes at the single-cell level.

Nick Bostrom: What Happens When AI Evolves Faster Than Humans?

The journey “Up from Eden” could involve humanity’s growth in understanding, comprehending and appreciating with greater love true and wisdom, shaping a future worth living for.


AI is accelerating faster than human biology. What happens to humanity when the future moves faster than we can evolve?

Oxford philosopher Nick Bostrom, author of Superintelligence, says we are entering the biggest turning point in human history — one that could redefine what it means to be human.

In this talk, Bostrom explains why AI might be the last invention humans ever make, and how the next decade could bring changes that once took thousands of years in health, longevity, and human evolution. He warns that digital minds may one day outnumber biological humans — and that this shift could change everything about how we live and who we become.

Superintelligence will force us to choose what humanity becomes next.

Who’s Really Winning At Longevity? (Featuring @Unaging.Crissman.Loomis)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

/* */