Toggle light / dark theme

New enzyme network with competing peptides can make decisions based on external environment

The ability to respond to changing surroundings was once considered exclusive to complex living organisms. Then came computers, specially designed for stimulus–response tasks, which can take in signals from their environment and choose what to do next based on the instructions already written into them.

Scientists have long wanted to replicate this kind of behavior in . Life and computers both need many parts working in sync to make decisions, so expecting a handful of chemicals in a to do the same seemed quite far-fetched.

Not anymore. A team of researchers from the Netherlands and Australia has developed a novel chemical network where different peptides compete for enzymes—specifically proteases arranged in a network. This competition causes the to reorganize itself, forming an enzymatic network that adapts to the external environment.

Nonsurgical treatment shows promise for targeted seizure control

Rice University bioengineers have demonstrated a nonsurgical way to quiet a seizure-relevant brain circuit in an animal model. The team used low-intensity focused ultrasound to briefly open the blood-brain barrier (BBB) in the hippocampus, delivered an engineered gene therapy only to that region and later flipped an on-demand “dimmer switch” with an oral drug.

The research shows that a one-time, targeted procedure can modulate a specific brain region without impacting off-target areas of the brain. It is published in and featured on the cover of ACS Chemical Neuroscience.

“Many are driven by hyperactive cells at a particular location in the brain,” said study lead Jerzy Szablowski, assistant professor of bioengineering and a member of the Rice Neuroengineering Initiative. “Our approach aims the therapy where it is needed and lets you control it when you need it, without surgery and without a permanent implant.”

Nanorobots guide stem cells to become bone cells via precise pressure

For the first time, researchers at the Technical University of Munich (TUM) have succeeded in using nanorobots to stimulate stem cells with such precision that they are reliably transformed into bone cells. To achieve this, the robots exert external pressure on specific points in the cell wall. The new method offers opportunities for faster treatments in the future.

Prof. Berna Özkale Edelmann’s nanorobots consist of tiny gold rods and plastic chains. Several million of them are contained in a gel cushion measuring just 60 micrometers, together with a few . Powered and controlled by , the robots, which look like tiny balls, mechanically stimulate the cells by exerting pressure.

“We heat the gel locally and use our system to precisely determine the forces with which the nanorobots press on the cell—thereby stimulating it,” explains the professor of nano-and microrobotics at TUM. This mechanical stimulation triggers biochemical processes in the cell. Ion channels change their properties, and proteins are activated, including one that is particularly important for bone formation.

First Glimpse of a “Young Sun” Super-Eruption Captured by Astronomers

A young Sun’s violent plasma eruptions may have helped ignite the spark of life on Earth. Astronomers observed a massive, multi-temperature plasma eruption from a young Sun-like star, revealing how early solar explosions could shape planets. These fierce events may have influenced the atmosphere and life-forming chemistry of the early Earth.

Although we rarely notice from Earth, the Sun is continuously hurling enormous clouds of charged plasma into space. These events, known as coronal mass ejections (CMEs), often occur alongside sudden bursts of light called solar flares. When particularly strong, CMEs can stretch far enough to disturb Earth’s magnetic field, producing dazzling auroras and sometimes triggering geomagnetic storms that disrupt satellites or even power grids.

Scientists believe that billions of years ago, when the Sun and Earth were both young, solar activity was far more intense than it is today. Powerful CMEs during that period may have influenced the conditions that allowed life to emerge and evolve. Studies of young Sun-like stars — used as stand-ins for our own star’s early years — show that these stars often unleash flares far stronger than any recorded from the modern Sun.

A Quantum Microscope Reveals Water Breaking Apart

A scheme combining a scanning probe microscope with a quantum sensor can locally trigger water dissociation and observe the elementary steps of such a reaction.

Every experimental technique comes with trade-offs. High-resolution microscopy can pinpoint the positions of individual atoms, yet it typically cannot identify them chemically. Spectroscopy provides chemical information but often only as an averaged signal over a large region. To construct a comprehensive picture of processes at the nanoscale, researchers often resort to combining two or more independent methods. The metaphorical silver bullet would be a single technique that is both local and capable of identifying chemical species as they form and react. Now Wentian Zheng of Peking University and his collaborators have taken an impressive step toward that goal. They have combined two previously separate capabilities—quantum sensing and scanning probe microscopy (SPM)—into a single instrument that can trigger and observe chemical reactions with nanometer resolution [1].

New recharge-to-recycle reactor turns battery waste into new lithium feedstock

As global electric vehicle adoption accelerates, end-of-life battery packs are quickly becoming a major waste stream. Lithium is costly to mine and refine, and most current recycling methods are energy- and chemical-intensive, often producing lithium carbonate that must be further processed into lithium hydroxide for reuse.

Anxiety disorders tied to low levels of an essential nutrient in the brain

People with anxiety disorders have lower levels of choline in their brains, according to research from UC Davis Health.

The study, published in the journal Molecular Psychiatry, analyzed data from 25 studies. The researchers compared the levels of neurometabolites—chemicals produced during —in 370 people with to 342 people without anxiety.

They found the level of choline—an essential nutrient—was about 8% lower in those with anxiety disorders. The evidence for low choline was especially consistent in the prefrontal cortex, the part of the brain that helps control thinking, emotions and behavior.

A scalpel that can diagnose? Scientists unveil a ‘Lab-on-a-Scalpel’ for real-time surgical insights

Imagine a surgeon in the middle of a complex operation, able to get instant biochemical feedback not from a lab down the hall, but from the very tool in their hand. This vision is now one step closer to reality thanks to researchers at the University of Chemistry and Technology, Prague (UCT Prague).

The team, led by Professor Zdeněk Sofer, has developed and validated a “Lab-on-a-Scalpel” concept, a surgical tool with an integrated diagnostic sensor. They published their findings in the journal Analytical Chemistry.

This innovation addresses a critical challenge in surgery: the time lag between sample collection and lab results. During invasive procedures, a patient’s biochemical profile can change rapidly, but traditional testing methods are too slow to provide the real-time data needed for immediate, informed decisions.

How plastics grip metals at the atomic scale: Molecular insights pave way for better transportation materials

What makes some plastics stick to metal without any glue? Osaka Metropolitan University scientists have peered into the invisible adhesive zone that forms between certain plastics and metals—one atom at a time—to uncover how chemistry and molecular structure determine whether such bonds bend or break.

Their insights clarify metal–plastic bonding mechanisms and offer guidelines for designing durable, lightweight, and more sustainable hybrid materials for use in transportation.

Combining the strength of metal with the lightness and flexibility of plastic, polymer–metal hybrid structures are emerging as key elements for building lighter, more fuel-efficient vehicles. The technology relies on bonding metals with plastics directly, without adhesives. The success of these hybrids, however, hinges on how well the two materials stick together.

Scientists uncover what delayed Earth’s oxygen boom for a billion years

Billions of years ago, cyanobacteria began releasing oxygen through photosynthesis, but the atmosphere stayed oxygen-poor for ages. Researchers uncovered that trace compounds like nickel and urea may have delayed Earth’s oxygenation for millions of years. Experiments mimicking early Earth revealed how their concentrations controlled cyanobacterial growth, dictating when oxygen began to accumulate. As nickel declined and urea stabilized, photosynthetic life thrived, sparking the Great Oxidation Event. The findings could also guide the search for biosignatures on distant worlds.

The arrival of oxygen in Earth’s atmosphere marked a defining moment in the planet’s history, transforming it into a world capable of supporting complex life. This major shift, known as the Great Oxidation Event (GOE), took place approximately 2.1 to 2.4 billion years ago. However, oxygenic photosynthesis — produced by cyanobacteria — had likely evolved hundreds of millions of years before this event. Despite this early ability to generate oxygen, atmospheric levels remained low for a surprisingly long time. Scientists have long debated the cause of this delay, considering explanations such as volcanic emissions, chemical sinks, and biological interactions. Yet no single factor has fully explained why it took so long for oxygen to build up in Earth’s air.

To tackle this enduring question, researchers focused on an often overlooked element of early Earth chemistry: the role of trace compounds such as nickel and urea in cyanobacterial growth.

/* */