Toggle light / dark theme

Experiment explores contribution of neural, epigenetic and behavioral factors to autism spectrum disorder

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is estimated to be experienced by roughly 1 in 127 people worldwide. It is characterized by atypical patterns in brain development, which manifest in differences in communication, social interactions, behavior and responses to sensory information.

Past neuroscientific and suggest that a variety of factors contribute to the development of ASD. These can include , chemical alterations that influence the expressions of genes (i.e., epigenetic factors), differences in the structure of specific or neural circuits, and environmental factors, such as early life events or infections or immune responses during pregnancy.

Researchers at the Korea Brain Research Institute and University of Fukui in Japan recently carried out a study aimed at further exploring these different dimensions of ASD, focusing on , the communication between brain regions, epigenetic changes and behavioral patterns. Their findings, published in Translational Psychiatry, paint a clearer picture of the intricate underpinnings of the disorder and could inform the development of more precise tools for diagnosing it.

Outdoor air exposure to industrial solvent trichloroethylene may raise risk of Parkinson’s disease

Long-term exposure to the industrial solvent trichloroethylene (TCE) outdoors may be linked to an increased risk of Parkinson’s disease, according to a large nationwide study published in Neurology.

TCE is a chemical used in metal degreasing, and other industrial applications. Although TCE has been banned for certain uses, it remains in use today as an industrial solvent and is a persistent environmental pollutant in air, water and soil across the United States. The study does not prove that TCE exposure causes Parkinson’s disease, it only shows an association.

“In this nationwide study of older adults, long-term exposure to trichloroethylene in outdoor air was associated with a small but measurable increase in Parkinson’s risk,” said study author Brittany Krzyzanowski, Ph.D., of Barrow Neurological Institute in Phoenix. “These findings add to a growing body of evidence that environmental exposures may contribute to Parkinson’s disease.”

Entangled states enhance energy transfer in models of molecular systems

A study from Rice University, published in PRX Quantum, has found that energy transfers more quickly between molecular sites when it starts in an entangled, delocalized quantum state instead of from a single site. The discovery could lead to the development of more efficient light-harvesting materials that enhance the conversion of energy from light into other forms of energy.

Many , including photosynthesis, depend on rapid and efficient energy transfer following absorption. Understanding how quantum mechanical effects like entanglement influence these processes at room temperature could significantly change our approach to creating artificial systems that mimic nature’s efficiency.

“Delocalizing the initial excitation across multiple sites accelerates the transfer in ways that starting from a single site cannot achieve,” said Guido Pagano, the study’s corresponding author and assistant professor of physics and astronomy.

Heat-rechargeable design powers nanoscale molecular machines

Though it might seem like science fiction, scientists are working to build nanoscale molecular machines that can be designed for myriad applications, such as “smart” medicines and materials. But like all machines, these tiny devices need a source of power, the way electronic appliances use electricity or living cells use ATP (adenosine triphosphate, the universal biological energy source).

Researchers in the laboratory of Lulu Qian, Caltech professor of bioengineering, are developing nanoscale machines made out of synthetic DNA, taking advantage of DNA’s unique chemical bonding properties to build circuits that can process signals much like miniature computers. Operating at billionth-of-a-meter scales, these molecular machines can be designed to form DNA robots that sort cargos or to function like a neural network that can learn to recognize handwritten numerical digits.

One major challenge, however, has remained: how to design and power them for multiple uses.

Energy researchers discover fraction of an electron that drives catalysis

A team of researchers from the University of Minnesota Twin Cities College of Science and Engineering and the University of Houston’s Cullen College of Engineering has discovered and measured the fraction of an electron that makes catalytic manufacturing possible.

This discovery, published in the journal ACS Central Science, explains the utility of such as gold, silver and platinum for this manufacturing, and provides insight for designing new breakthrough catalytic materials.

Industrial catalysts—substances that reduce the amount of energy required for a given chemical reaction—allow producers to increase the yield, speed or efficiency of a specific reaction in pursuit of other materials. Such catalysts are used in processes related to pharmaceutical and battery production as well as petrochemical efforts such as the refining of crude oil, allowing supply to keep pace with demand in ways it otherwise could not.

Scientists Develop the World’s First Rechargeable Hydride Ion Battery

Scientists have built the first rechargeable hydride ion battery. Hydride ions (H⁻) have drawn interest as potential charge carriers for future electrochemical devices because of their extremely low mass and high redox potential. Yet, progress has been limited since no electrolyte has been able to

Battery made from natural materials could replace conventional lithium-ion batteries

What if the next battery you buy was made from the same kinds of ingredients found in your body? That’s the idea behind a breakthrough battery material made from natural, biodegradable components. It’s so natural, it could even be consumed as food.

A team of researchers at Texas A&M University, including Distinguished Professor of Chemistry Dr. Karen Wooley and Professor of Chemical Engineering Dr. Jodie Lutkenhaus, has developed a biodegradable battery using natural polymers. The findings are published in the Proceedings of the National Academy of Sciences.

Wooley’s research group in the College of Arts and Sciences has spent the past 15 years shifting toward natural products for the construction of sustainable and degradable plastics materials. Lutkenhaus, associate dean for research in the College of Engineering, has been using organic materials to design a better battery. She suggested collaboration to combine Wooley’s naturally sourced polymers with her battery expertise.

Organic semiconductor molecule set to transform solar energy harvesting

In a discovery that bridges a century of physics, scientists have observed a phenomenon, once thought to be the domain of inorganic metal oxides, thriving within a glowing organic semiconductor molecule. This work, led by the University of Cambridge, reveals a powerful new mechanism for harvesting light and turning it into electricity. This could redefine the future of solar energy and electronics, and lead to lighter, cheaper, and simpler solar panels made from a single material.

The research focuses on a spin-radical organic semiconductor molecule called P3TTM. At its center sits a single, unpaired electron, giving it unique magnetic and electronic properties. This work arises from a collaboration between the synthetic chemistry team of Professor Hugo Bronstein in the Yusuf Hamied Department of Chemistry and the semiconductor physics team led by Professor Sir Richard Friend in the Department of Physics. They have developed this class of to give very efficient luminescence, as exploited in organic LEDs.

However, the study, published in Nature Materials, reveals their hidden talent: When brought into close contact, their unpaired electrons interact in a manner strikingly similar to a Mott-Hubbard insulator.

How the Red Sea went completely dry before being flooded by the Indian Ocean over 6 million years ago

Scientists at King Abdullah University of Science and Technology (KAUST) have provided conclusive evidence that the Red Sea completely dried out about 6.2 million years ago, before being suddenly refilled by a catastrophic flood from the Indian Ocean. The findings put a definitive time on a dramatic event that changed the Red Sea.

Using , microfossil evidence, and geochemical dating techniques, the KAUST researchers showed that a massive change happened in about 100,000 years—a blink of an eye for a major geological event. The Red Sea went from connecting with the Mediterranean Sea to an empty, salt-filled basin. Then, a massive flood burst through volcanic barriers to open the Bab el-Mandab strait and reconnect the Red Sea with the world’s oceans.

The work is published in the journal Communications Earth & Environment.

Forensic test recovers fingerprints from fired ammunition casings despite intense heat

A pioneering new test that can recover fingerprints from ammunition casing, once thought nearly impossible, has been developed by two Irish scientists.

Dr. Eithne Dempsey, and her recent Ph.D. student Dr. Colm McKeever, of the Department of Chemistry in Ireland’s Maynooth University have developed a unique electrochemical method which can visualize fingerprints on brass casings, even after they have been exposed to the high temperature conditions experienced during gunfire. The study is published in the journal Forensic Chemistry.

For decades, investigators have struggled to recover fingerprints from weapons because any biological trace is usually destroyed by the , friction and gas released after a gun is fired. As a result, criminals often abandon their weapons or casings at , confident that they leave no fingerprint evidence behind.

/* */