Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Researchers in Korea have developed an artificial intelligence (AI) technology that predicts molecular properties by learning electron-level information without requiring costly quantum mechanical calculations. The research was presented at ICLR 2025.
A joint research team led by Senior Researcher Gyoung S. Na from the Korea Research Institute of Chemical Technology (KRICT) and Professor Chanyoung Park from the Korea Advanced Institute of Science and Technology (KAIST) has developed a novel AI method—called DELID (Decomposition-supervised Electron-Level Information Diffusion)—that accurately predicts material properties using electron-level information without performing quantum mechanical computations.
The method achieved state-of-the-art prediction accuracy on real-world datasets consisting of approximately 30,000 experimental molecular data.
Every breath we take in contains 21% oxygen, the gas that makes life on Earth possible. Oxygen, in its combined oxide state, has always been abundant in Earth’s crust, but elemental diatomic oxygen became part of our atmosphere around 2.4 to 2.5 billion years ago as a gift from cyanobacteria, which triggered the Great Oxidation Event and breathed life into Earth.
A joint venture between NASA Goddard Space Flight Center and the University of Leeds discovered that the Earth’s magnetic field strength and atmospheric oxygen levels over the past 540 years have seemed to spike and dip at the same time, showing a strong, statistically significant correlation between the two.
This correlation could arise from unexpected connections between geophysical processes in Earth’s deep interior, redox reactions on Earth’s surface, and biogeochemical cycling.
Illinois engineers fused ultrafast imaging with smart algorithms to peek at living brain chemistry, turning routine MRIs into metabolic microscopes. The system distinguishes healthy regions, grades tumors, and forecasts MS flare-ups long before structural MRI can. Precision-medicine neurology just moved closer to reality.
While glucose, or sugar, is a well-known fuel for the brain, Weill Cornell Medicine researchers have demonstrated that electrical activity in synapses—the junctions between neurons where communication occurs—can lead to the use of lipid or fat droplets as an energy source.
The study, published in Nature Metabolism, challenges “the long-standing dogma that the brain doesn’t burn fat,” said principal investigator Dr. Timothy A. Ryan, professor of biochemistry and of biochemistry in anesthesiology, and the Tri-Institutional Professor in the Department of Biochemistry at Weill Cornell Medicine.
The paper’s lead author, Dr. Mukesh Kumar, a postdoctoral associate in biochemistry at Weill Cornell Medicine who has been studying the cell biology of fat droplets, suggested that it makes sense that fat may play a role as an energy source in the brain like it does with other metabolically demanding tissues, such as muscle.
Satyendra Nath Bose FRS, MP [ 1 ] (/ ˈ b oʊ s / ; [ 4 ] [ a ] 1 January 1894 – 4 February 1974) was an Indian theoretical physicist and mathematician. He is best known for his work on quantum mechanics in the early 1920s, in developing the foundation for Bose–Einstein statistics, and the theory of the Bose–Einstein condensate. A Fellow of the Royal Society, he was awarded India’s second highest civilian award, the Padma Vibhushan, in 1954 by the Government of India. [ 5 ] [ 6 ] [ 7 ]
The eponymous particles class described by Bose’s statistics, bosons, were named by Paul Dirac. [ 8 ] [ 9 ]
A polymath, he had a wide range of interests in varied fields, including physics, mathematics, chemistry, biology, mineralogy, philosophy, arts, literature, and music. He served on many research and development committees in India, after independence. [ 10 ] .
Southwest Research Institute has collaborated with Yale University to summarize the scientific community’s notable progress in advancing the understanding of the formation and evolution of the inner rocky planets, the so-called terrestrial planets. Their paper focuses on late accretion’s role in the long-term evolution of terrestrial planets, including their distinct geophysical and chemical properties as well as their potential habitability.
The Review paper is published in the journal Nature.
Solar systems form when clouds of gas and dust begin to coalesce. Gravity pulls these elements together, forming a central star, like our sun, surrounded by a flattened disk of consolidating materials. Our terrestrial planets—Mercury, Venus, Earth and Mars—formed as smaller rocky objects accumulated, or accreted, into larger planetesimals and eventually protoplanets, when late impacts made critical contributions. Earth was probably the last terrestrial planet to form, reaching about 99% of its final mass within about 60–100 million years after the first solids began to consolidate.
A tiny grain from asteroid Ryugu has revealed djerfisherite, a mineral that normally forms in scorching, oxygen-poor settings—conditions Ryugu was never thought to experience.
The surprise find hints that the asteroid either endured unexpected heat spikes or captured exotic material transported across the early Solar System. Microscopy and chemical clues now challenge the idea that Ryugu is compositionally uniform and point to a far more chaotic mixing of planetary building blocks. Scientists are turning to isotopic “fingerprints” to trace the grain’s true origin and decode how primitive asteroids really formed.
Hayabusa2 brings ryugu samples & surprising mineral clues.