Toggle light / dark theme

How a key receptor tells apart two nearly identical drug molecules

G-protein-coupled receptors (GPCRs) are one of the largest families of cell surface proteins in the human body that recognize hormones, neurotransmitters, and drugs. These receptors regulate a wide range of physiological processes and are the targets of more than 30% of currently marketed drugs. The histamine H1 receptor (H1R) is one such GPCR subtype that plays a key role in mediating allergic reactions, inflammation, vascular permeability, airway constriction, wakefulness, and cognitive functions in the human body. While antihistamines primarily target H1R, current drugs can exhibit limited therapeutic efficacy, prompting researchers to look at H1R ligands from new perspectives.

Recently, the importance of drug design based not only on the affinity or binding energy between a compound and its target protein, but also on its components, enthalpy, and entropy, has been recognized as crucial for rational drug design. In particular, enthalpy–entropy compensation has emerged as a key concept for understanding ligand selectivity and isomer specificity. However, direct experimental measurement of these thermodynamic parameters has been limited to cell surface proteins, such as GPCRs.

Addressing this gap, a research team led by Professor Mitsunori Shiroishi from the Department of Life System Engineering, Tokyo University of Science (TUS), Japan, systematically investigated the binding thermodynamics of the H1R. The team included Mr. Hiroto Kaneko (first-year doctoral student) and Associate Professor Tadashi Ando from TUS, among others. Their study was published online in ACS Medicinal Chemistry Letters on January 26, 2026.

Redesigned electrolyte helps lithium-metal batteries safely reach full charge in 15 minutes

Lithium-metal batteries (LMBs) are rechargeable batteries that contain an anode (i.e., the electrode through which current flows and a loss of electrons occurs) made of lithium metal. Compared to conventional lithium-ion batteries (LIBs), which power most electronic devices on the market today, LMBs could store more energy, charge faster and operate in extreme environments.

Despite their advantages, these batteries have not yet achieved their full potential and recharging them safely in short periods of time has proved challenging. In particular, enabling the fast and efficient movement of electrons and ions across the boundary between electrodes and the electrolyte, a process known as charge transfer, has proved difficult.

If charge transfer is slow, chemical reactions become sluggish, which can also lead to undesirable side reactions and prompt the formation of Li dendrites. These are essentially needle-like extensions that can adversely impact a battery’s performance, lead to its sudden failure and, in most extreme cases, result in fires or explosions.

A microfluidic chip for one-step detection of PFAS and other pollutants

Environmental pollutant analysis typically requires complex sample pretreatment steps such as filtration, separation, and preconcentration. When solid materials such as sand, soil, or food residues are present in water samples, analytical accuracy often decreases, and filtration can unintentionally remove trace-level target pollutants along with the solids.

To address this challenge, a joint research team led by Dr. Ju Hyeon Kim at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with Professor Jae Bem You’s group at Chungnam National University, has developed a microfluidic-based analytical device that enables direct extraction and analysis of pollutants from solid-containing samples without any pretreatment. The study was published in ACS Sensors

Water, food, and environmental samples encountered in daily life may contain trace amounts of hazardous contaminants that are invisible to the naked eye.

Shaping carbon fiber with electricity: Wireless voltage pulses drive reversible bending

Controlled manipulation of fibers that are as thin as or even thinner than human hair is a real challenge. Despite technological development, the precise and reversible change of the microfibers’ orientation is not easy. The interdisciplinary team of researchers from the Institute of Physical Chemistry, Polish Academy of Sciences, has recently developed a way to control the shape of microfibers with electricity. This brings us closer to a novel technical solution in micromechanics and soft robotics.

Their recent work, published in the Nature Communications journal, demonstrates the first proof-of-concept results on the motion of pristine carbon fibers caused by asymmetric electrochemical processes occurring in the material.

Technical advance ✨

Laszlo Nagy & team define unique regulatory programs of placental Hofbauer cells, advancing understanding of their role in pregnancy health and potential disease:

The image shows enrichment of Hofbauer cells by CD163-based cell sorting Placenta Fetal Development.


1Department of Biochemistry and Molecular Biology, Faculty of Medicine, and.

2Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary.

3Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA.

Early vertebrate biomineralization and eye structure determined by synchrotron X-ray analyses of Silurian jawless fish

Complex eyes in vertebrates may have evolved as early as 500 million years ago. Reconstructing the early evolutionary history of vertebrates requires understanding organisms that existed before bone evolved. However, these ‘soft-bodied’ fossils are inherently difficult to study, resulting in conflicting anatomical and evolutionary interpretations. For the first time, researchers used synchrotron-based imaging techniques to examine two Silurian taxa, Jamoytius and Lasanius, that may bridge the gap between the bone-less and boned vertebrates. They recover the first direct evidence of biomineralised apatitic bone in both taxa and of camera-eyes in Jamoytius. The discoveries indicate vertebrate bones and complex eyes evolved earlier than previously thought, and demonstrate the power of these techniques for problematic fossils.

Read the article in Proceedings B.


Abstract. Understanding the origin and early diversification of vertebrates has always been a challenge because of the ambiguous and conflicting interpretations of the soft-bodied, pre-biomineralization fossil record. Here, we apply synchrotron radiation techniques to Jamoytius and Lasanius, two soft-bodied Silurian vertebrates, key taxa for discerning vertebrate bone evolution owing to highly localized, but debated, biomineralization. We map soft-tissue structures and quantify details of biochemical residue impossible to resolve with traditional methods. We present the first unequivocal evidence for biomineralized apatitic scales in Jamoytius by combining synchrotron rapid scanning X-ray fluorescence and Fourier transform infrared spectroscopy (elevated Ca 37% and P 21%). This approach also recovers robust evidence for apatitic biomineralization in Lasanius. Chemical mapping of the optical anatomy of Jamoytius recovers a close correlation with Zn and Cu distribution, providing evidence for a retinal pigmented epithelium and complex eyes. In both taxa, chemical maps reveal original anatomical details not apparent in visible light, including potential evidence of other sensory anatomy in Jamoytius. Our work resolves long-standing fundamental anatomical debates, indicating stem-group origins for bone and complex eyes in vertebrates. We highlight the potential of using a powerful combination of analytical techniques to unlock otherwise inaccessible data in problematic fossils.

Organic molecule stores solar energy for years, then releases it as heat on demand

When the sun goes down, solar panels stop working. This is the fundamental hurdle of renewable energy: how to save the sun’s power for a rainy day—or a cold night. Chemists at UC Santa Barbara have developed a solution that doesn’t require bulky batteries or electrical grids. In a paper published in the journal Science, Associate Professor Grace Han and her team detail a new material that captures sunlight, stores it within chemical bonds and releases it as heat on demand.

The material, a modified organic molecule called pyrimidone, is the latest advancement in molecular solar thermal (MOST) energy storage.

“The concept is reusable and recyclable,” said Han Nguyen, a doctoral student in the Han Group and the paper’s lead author.

Wavelength-resolved heterodimer [2 + 2] photocycloadditions for reversible surface grafting

🔥 New and HOT in Chemical Science!

“” by Kai Mundsinger (Queensland University of Technology, Australia), Christopher Barner-Kowollik (Queensland University of Technology, Australia and Karlsruhe Institute of Technology, Germany), et al.

Read it for free.


We report the first wavelength-dependent quantum yields of a [2 + 2] photocycloaddition generating the heterodimers of 7-hydroxycoumarin (7HCou) and styrene via a photochemical action plot. The wavelength-dependent heterodimer quantum yields are quantified at a constant number of photons at each wavelength between 310 and 370 nm. The resulting wavelength-dependent quantum yields demonstrate that the heterodimer is most efficiently generated at 345 nm, red-shifted by close to 25 nm compared to the absorption maximum of 7HCou at 320 nm. We subsequently translate these findings to photochemical surface functionalization by exploiting heterodimer formation between a surface bound coumarin derivative and para-styrene perfluoroalkyl ether (StyPFA) on surfaces under 345 nm irradiation to reversibly modulate surface hydrophobicity. The reversibility of the surface heterodimerization is demonstrated by removing StyPFA under UVC irradiation, and re-functionalization on the same surface. Functional heterodimer formation and the reversibility of the reaction on surface are followed via surface-sensitive X-ray photoelectron spectroscopy (XPS) and contact angle measurements. We subsequently apply our photochemical surface functionalization strategy to a dual cure photoresin based on a polyurethane-acrylate interpenetrating network, without deterioration of its mechanical properties, thereby confirming the feasibility of a photocycloaddition-based functionalization strategy for photoresins.

Quantum Calculations Boosted By Doubling Computational Space For Complex Molecules

Researchers have developed a new computational method, DOCI-QSCI-AFQMC, which accurately simulates complex molecular systems by effectively doubling the number of orbitals considered in standard quantum simulations and overcoming limitations of existing single-reference techniques, as demonstrated through successful modelling of chemical bonds and reactions.

New 3D printing ink uses 70% lignin and recycles with water

Additive manufacturing (AM) methods, such as 3D printing, enable the realization of objects with different geometric properties, by adding materials layer-by-layer to physically replicate a digital model. These methods are now widely used to rapidly create product prototypes, as well as components for vehicles, consumer goods and medical technologies.

A particularly effective AM technique, called direct ink writing (DIW), entails the 3D printing of objects at room temperature using inks with various formulations. Most of these inks are based on fossil-derived polymers, materials that are neither recyclable nor biodegradable. Recently introduced lignin-derived inks could be a more sustainable alternative. However, they typically need to be treated at high heat or undergo permanent chemical bonding processes to reliably support 3D printing. This prevents them from being re-utilized after objects are printed, limiting their sustainability.

/* */