Menu

Blog

Archive for the ‘chemistry’ category: Page 3

Aug 29, 2024

Rare earth single atoms enhance manganese oxide’s electrochemical oxygen evolution

Posted by in categories: chemistry, particle physics, sustainability

An international group of researchers has developed a novel approach that enhances the efficiency of the oxygen evolution reaction (OER), a key process in renewable energy technologies. By introducing rare earth single atoms into manganese oxide (MnO2), the group successfully modulated oxygen electronic states, leading to unprecedented improvements in OER performance.

Aug 28, 2024

Brain Scientists Finally Discover the Glue that Makes Memories Stick for a Lifetime

Posted by in categories: chemistry, neuroscience

A long-running research endeavor reveals key chemical players that cement memories in place—and still more have yet to be discovered.

By Simon Makin

The persistence of memory is crucial to our sense of identity, and without it, there would be no learning, for us or any other animal. It’s little wonder, then, that some researchers have called how the brain stores memories the most fundamental question in neuroscience.

Aug 28, 2024

Solid-state electrolyte advance could double energy storage for next-gen vehicles

Posted by in categories: chemistry, energy, sustainability, transportation

Using a polymer to make a strong yet springy thin film, scientists led by the Department of Energy’s Oak Ridge National Laboratory are speeding the arrival of next-generation solid-state batteries. This effort advances the development of electric vehicle power enabled by flexible, durable sheets of solid-state electrolytes.

The sheets may allow scalable production of future solid-state batteries with higher energy density electrodes. By separating negative and positive electrodes, they would prevent dangerous electrical shorts while providing high-conduction paths for ion movement.

These achievements foreshadow greater safety, performance and compared to current batteries that use liquid electrolytes, which are flammable, chemically reactive, thermally unstable and prone to leakage.

Aug 27, 2024

AI Models Complex Molecular States with Precision

Posted by in categories: chemistry, quantum physics, robotics/AI, solar power, sustainability

Summary: Researchers developed a brain-inspired AI technique using neural networks to model the challenging quantum states of molecules, crucial for technologies like solar panels and photocatalyst.

This new approach significantly improves accuracy, enabling better prediction of molecular behaviors during energy transitions. By enhancing our understanding of molecular excited states, this research could revolutionize material prototyping and chemical synthesis.

Aug 26, 2024

Unlocking the Secrets of Promethium: Scientists Capture a Never-Before-Seen Elemental Bond

Posted by in categories: chemistry, materials

A team of scientists led by the U.S. Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL) recently made an unprecedented observation of how promethium, a rare element, forms chemical bonds in aqueous solutions.

This groundbreaking discovery was made using the Beamline for Materials Measurement (BMM), a beamline funded and operated by the National Institute of Standards and Technology, at the National Synchrotron Light Source II, a DOE Office of Science user facility at DOE’s Brookhaven National Laboratory.

Aug 25, 2024

Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials

Posted by in categories: chemistry, computing, particle physics

Recently, two-dimensional (2D) materials have gained immense attention, as they are promising in various application fields, such as energy storage, thermal management, photodetectors, catalysis, field-effect transistors, and photovoltaic modules. These merits of 2D materials are attributed to their unique structure and properties. Chirality is an intrinsic property of a substance, which means the substance can not overlap with its mirror image. Significant progress has been made in chiral science, for chirality uniquely influences a chiral substance’s performance. With the rapid development of chiral science, it became unveiled that chirality not only exists in chiral organic molecules but can also be induced in 2D inorganic materials and 2D organic-inorganic hybrid materials by breaking the chiral symmetry within their framework to form 2D chiral materials. Compared with 2D materials that do not have chirality, these 2D inorganic chiral materials and 2D organic-inorganic hybrid chiral materials exhibit innovative performance due to chiral symmetry breaking. Nevertheless, at present, only a fraction of work is available which comprehensively sums up the progress of these promising 2D chiral materials. Thus, given their high potential, it is urgent to summarize these newly developed 2D chiral materials comprehensively. In the current study, to feature and highlight their major significance, the recent progress of 2D inorganic materials and 2D organic-inorganic hybrid materials from their chemical composition and categories, application potential associated with their unique properties, and present synthesis strategies to fabricate them along with discussion concerning the development challenges and their bright future were reviewed. This review is anticipated to be instructive and provide a high understanding of advanced functional 2D materials with chirality.

Keywords: Chirality, two-dimensional, inorganic, organic-inorganic hybrid, asymmetric, enantioselective, chiral-induced spin selectivity (CISS), photoelectronic, spintronics.

Aug 25, 2024

Voxel building blocks for bioprinting human-compatible organs

Posted by in categories: bioprinting, biotech/medical, chemistry, engineering

A research team at the University of Virginia School of Engineering and Applied Science has developed what it believes could be the template for the first building blocks for human-compatible organs printed on demand.

Liheng Cai, an assistant professor of materials science and engineering and chemical engineering, and his Ph.D. student, Jinchang Zhu, have made biomaterials with controlled mechanical properties matching those of various human tissues.

“That’s a big leap compared to existing bioprinting technologies,” Zhu said.

Aug 25, 2024

For first time, DNA nanotechnology offers both data storage and computing functions

Posted by in categories: biotech/medical, chemistry, computing, engineering, nanotechnology

Researchers from North Carolina State University and Johns Hopkins University have demonstrated a technology capable of a suite of data storage and computing functions – repeatedly storing, retrieving, computing, erasing or rewriting data – that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.

“In conventional computing technologies, we take for granted that the ways data are stored and the way data are processed are compatible with each other,” says project leader Albert Keung, co-corresponding author of a paper on the work (Nature Nanotechnology, “A Primordial DNA Store and Compute Engine”). “But in reality, data storage and data processing are done in separate parts of the computer, and modern computers are a network of complex technologies,” Keung is an associate professor of chemical and biomolecular engineering and a Goodnight Distinguished Scholar at NC State.

“DNA computing has been grappling with the challenge of how to store, retrieve and compute when the data is being stored in the form of nucleic acids,” Keung says. “For electronic computing, the fact that all of a device’s components are compatible is one reason those technologies are attractive. But, to date, it’s been thought that while DNA data storage may be useful for long-term data storage, it would be difficult or impossible to develop a DNA technology that encompassed the full range of operations found in traditional electronic devices: storing and moving data; the ability to read, erase, rewrite, reload or compute specific data files; and doing all of these things in programmable and repeatable ways.

Aug 24, 2024

World’s Fastest Microscope Freezes Time To Capture Moving Electrons

Posted by in categories: bioengineering, chemistry, physics

University of Arizona researchers have developed an ‘attomicroscopy’ technique using a novel ultrafast electron microscope that captures moving electrons in unprecedented detail, paving the way for significant scientific breakthroughs in physics and other fields.

Imagine having a camera so advanced that it can capture freeze-frame images of a moving electron—an object so fast it could orbit the Earth multiple times in just a second. Researchers at the University of Arizona have developed the world’s fastest electron microscope capable of this remarkable feat.

They believe their work will lead to groundbreaking advancements in physics, chemistry, bioengineering, materials sciences, and more.

Aug 24, 2024

Ultra-sensitive photothermal microscopy technique detects single nanoparticles as small as 5 nm

Posted by in categories: biotech/medical, chemistry, nanotechnology

The detection of individual particles and molecules has opened new horizons in analytical chemistry, cellular imaging, nanomaterials, and biomedical diagnostics. Traditional single-molecule detection methods rely heavily on fluorescence techniques, which require labeling of the target molecules.

Page 3 of 32712345678Last