Archive for the ‘chemistry’ category: Page 3

Dec 28, 2019

Detecting the Origin of Cancer‐Mobile Quantum Probe for Single Cancer Stem Cell Detection

Posted by in categories: chemistry, quantum physics

Cancer stem cells (CSC) are believed to be the driving force of cancer metastases and are a rare population of self‐renewing cells that contribute majorly to the poor outcomes of cancer therapy. The detection of CSC is of utmost importance to shed light on the indestructible nature of certain solid tumors and their metastatic ability. However, tumors tend to harbor CSCs in a specialized niche, making the detection process difficult. Currently, there is no method available to detect CSCs. The significance of this work is twofold. First, to the best of the knowledge, it is the first time that the detection of CSC is demonstrated. This approach simultaneously detects both the phenotypic and the metabolic state of the cell, thus enabling universal detection of CSC with high accuracy. Second, to the best of the knowledge, for the first time, light is shed on cell chemistry of CSC in their dedicated niche to facilitate a better understanding of the key players involved in the metabolic rewiring of CSC. This work will enable a better understanding of the fundamentals of CSCs, which are critical for the early diagnosis of cancer and the development of therapies for the cure of cancer.

Dec 22, 2019

Polina Mamoshina — The Beginning of an AI Healthcare Revolution

Posted by in categories: biotech/medical, bitcoin, chemistry, genetics, life extension, robotics/AI

From insilico meddicine — the beginning of an AI healthcare revolution.

Poly Mamoshina on Machine Learning for small molecule drug discovery and the beginning of an AI healthcare revolution — interviewed at the Undoing Aging conference in Berlin 2019!

Continue reading “Polina Mamoshina — The Beginning of an AI Healthcare Revolution” »

Dec 19, 2019

Physicists determine the barely-measurable property entropy for the first time in complex plasmas

Posted by in categories: chemistry, engineering, particle physics

Since the end of the 19th century, physicists have known that the transfer of energy from one body to another is associated with entropy. It quickly became clear that this quantity is of fundamental importance, and so began its triumphant rise as a useful theoretical quantity in physics, chemistry and engineering. However, it is often very difficult to measure. Professor Dietmar Block and Frank Wieben of Kiel University (CAU) have now succeeded in measuring entropy in complex plasmas, as they reported recently in the renowned scientific journal Physical Review Letters. In a system of charged microparticles within this ionized gas, the researchers were able to measure all positions and velocities of the particles simultaneously. In this way, they were able to determine the entropy, as it was already described theoretically by the physicist Ludwig Boltzmann around 1880.

Surprising thermodynamic equilibrium in plasma

“With our experiments, we were able to prove that in the important model system of complex , the thermodynamic fundamentals are fulfilled. What is surprising is that this applies to microparticles in a plasma, which is far away from thermodynamic equilibrium,” explains Ph.D. student Frank Wieben. In his experiments, he is able to adjust the thermal motion of the microparticles by means of a laser beam. Using video microscopy, he can observe the dynamic behaviour of the particles in real time, and determine the from the information collected.

Dec 13, 2019

Nanoscience breakthrough: Probing particles smaller than a billionth of a meter

Posted by in categories: bioengineering, biotech/medical, chemistry, nanotechnology

Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a new methodology that allows researchers to assess the chemical composition and structure of metallic particles with a diameter of only 0.5 to 2 nm. This breakthrough in analytical techniques will enable the development and application of minuscule materials in the fields of electronics, biomedicine, chemistry, and more.

The study and development of novel materials have enabled countless technological breakthroughs and are essential across most fields of science, from medicine and bioengineering to cutting-edge electronics. The rational design and analysis of innovative materials at nanoscopic scales allows us to push through the limits of previous devices and methodologies to reach unprecedented levels of efficiency and new capabilities. Such is the case for metal nanoparticles, which are currently in the spotlight of modern research because of their myriad potential applications. A recently developed synthesis method using dendrimer molecules as a template allows researchers to create metallic nanocrystals with diameters of 0.5 to 2 nm (billionths of a meter).

Dec 12, 2019

Google has performed the biggest quantum chemistry simulation ever

Posted by in categories: chemistry, computing, quantum physics

Google’s Sycamore quantum computer, which recently demonstrated its dominance over ordinary computers, is now breaking records in quantum chemistry.

Dec 11, 2019

Astrobiology And The Search For Extraterrestrial Like Life

Posted by in categories: alien life, chemistry, evolution, health

Ira Pastor, ideaXme exponential health ambassador, interviews Dr. Penelope “Penny” Boston, recent Director of NASA’s Astrobiology Institute.

Astrobiology is an interdisciplinary scientific field concerned with the origins, early evolution, distribution, and future of life in the universe, and considers the big question of whether extraterrestrial life exists, and if it does, how humans can detect it.

Continue reading “Astrobiology And The Search For Extraterrestrial Like Life” »

Dec 10, 2019

Scientists Create a New Kind of Artificial Flesh That Heals Itself Like The Real Thing

Posted by in categories: chemistry, materials

Artificial flesh is growing ever closer to the real thing. Scientists in Australia have now created a new jelly-like material which they claim has the strength and durability of actual skin, ligaments, or even bone.

“With the special chemistry we’ve engineered in the hydrogel, it can repair itself after it has been broken like human skin can,” explains chemist Luke Connal from the Australian National University.

“Hydrogels are usually weak, but our material is so strong it could easily lift very heavy objects and can change its shape like human muscles do.”

Continue reading “Scientists Create a New Kind of Artificial Flesh That Heals Itself Like The Real Thing” »

Dec 10, 2019

AstroBiology and the Search for ExtraTerrestrial-Like Life!! — ideaXme — Dr. Penelope “Penny” Boston, PhD., Director of NASA’s Astrobiology Institute — Ira Pastor

Posted by in categories: alien life, astronomy, bioengineering, chemistry, DNA, Elon Musk, evolution, futurism, government, Mark Zuckerberg

Dec 2, 2019

New algorithms to determine eigenstates and thermal states on quantum computers

Posted by in categories: chemistry, computing, information science, particle physics, quantum physics

Determining the quantum mechanical behavior of many interacting particles is essential to solving important problems in a variety of scientific fields, including physics, chemistry and mathematics. For instance, in order to describe the electronic structure of materials and molecules, researchers first need to find the ground, excited and thermal states of the Born-Oppenheimer Hamiltonian approximation. In quantum chemistry, the Born-Oppenheimer approximation is the assumption that electronic and nuclear motions in molecules can be separated.

A variety of other scientific problems also require the accurate computation of Hamiltonian ground, excited and thermal states on a quantum computer. An important example are combinatorial optimization problems, which can be reduced to finding the ground state of suitable spin systems.

So far, techniques for computing Hamiltonian eigenstates on quantum computers have been primarily based on phase estimation or variational algorithms, which are designed to approximate the lowest energy eigenstate (i.e., ground state) and a number of excited states. Unfortunately, these techniques can have significant disadvantages, which make them impracticable for solving many scientific problems.

Nov 28, 2019

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

Posted by in categories: biological, chemistry, engineering

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that painstakingly organized chaos, in temperatures millions of times colder than interstellar space, Kang-Kuen Ni achieved a feat of precision. Forcing two ultracold molecules to meet and react, she broke and formed the coldest bonds in the history of molecular couplings.

“Probably in the next couple of years, we are the only lab that can do this,” said Ming-Guang Hu, a postdoctoral scholar in the Ni lab and first author on their paper published today in Science. Five years ago, Ni, the Morris Kahn Associate Professor of Chemistry and Chemical Biology and a pioneer of ultracold chemistry, set out to build a new apparatus that could achieve the lowest temperature of any currently available technology. But they couldn’t be sure their intricate engineering would work.

Now, they not only performed the coldest reaction yet, they discovered their new apparatus can do something even they did not predict. In such intense cold—500 nanokelvin or just a few millionths of a degree above absolute zero—their slowed to such glacial speeds, Ni and her team could see something no one has been able to see before: the moment when two molecules meet to form two new molecules. In essence, they captured a reaction in its most critical and elusive act.

Page 3 of 3912345678Last