Archive for the ‘chemistry’ category: Page 2

Jul 15, 2022

Bacteria-based biohybrid microrobots on a mission to one day battle cancer

Posted by in categories: biotech/medical, chemistry, nanotechnology, robotics/AI

A team of scientists in the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems have combined robotics with biology by equipping E. coli bacteria with artificial components to construct biohybrid microrobots. First, as can be seen in Figure 1, the team attached several nanoliposomes to each bacterium. On their outer circle, these spherical-shaped carriers enclose a material (ICG, green particles) that melts when illuminated by near infrared light. Further towards the middle, inside the aqueous core, the liposomes encapsulate water soluble chemotherapeutic drug molecules (DOX).

The second component the researchers attached to the bacterium is . When exposed to a magnetic field, the iron oxide particles serve as an on-top booster to this already highly motile microorganism. In this way, it is easier to control the swimming of —an improved design toward an in vivo application. Meanwhile, the rope binding the liposomes and magnetic particles to the bacterium is a very stable and hard to break streptavidin and biotin complex, which was developed a few years prior and reported in a Nature article, and comes in useful when constructing biohybrid microrobots.

E. coli bacteria are fast and versatile swimmers that can navigate through material ranging from liquids to highly viscous tissues. But that is not all, they also have highly advanced sensing capabilities. Bacteria are drawn to chemical gradients such as or high acidity—both prevalent near tumor tissue. Treating cancer by injecting bacteria in proximity is known as bacteria mediated tumor therapy. The microorganisms flow to where the tumor is located, grow there and in this way activate the immune system of patients. Bacteria mediated tumor therapy has been a therapeutic approach for more than a century.

Jul 15, 2022

Providing embedded artificial intelligence with a capacity for palimpsest memory storage

Posted by in categories: biological, chemistry, robotics/AI

Biological synapses are known to store multiple memories on top of each other at different time scales, much like representations of the early techniques of manuscript writing known as “palimpsest,” where annotations can be superimposed alongside traces of earlier writing.

Biological palimpsest consolidation occurs via hidden that govern synaptic efficacy at varying lifetimes. The arrangement can facilitate idle memories to be overwritten without forgetting them, while using previously unseen memories short-term. Embedded can significantly benefit from such functionality; however, the hardware has yet to be demonstrated in practice.

In a new report, now published in Science Advances, Christos Giotis and a team of scientists in Electronics and Computer Science at the University of Southampton and the University of Edinburgh, U.K., showed how the intrinsic properties of metal-oxide volatile memristors mimicked the process of biological palimpsest consolidation.

Continue reading “Providing embedded artificial intelligence with a capacity for palimpsest memory storage” »

Jul 14, 2022

Geological activity can rapidly change deep microbial communities

Posted by in categories: biological, chemistry, sustainability

In the deep subsurface that plunges into the Earth for miles, microscopic organisms inhabit vast bedrock pores and veins. Belowground microorganisms, or microbes, comprise up to half of all living material on the planet and support the existence of all life forms up the food chain. They are essential for realizing an environmentally sustainable future and can change the chemical makeup of minerals, break down pollutants, and alter the composition of groundwater.

While the significance of bacteria and archaea is undeniable, the only evidence of their existence in the deep comes from traces of biological material that seep through mine walls, cave streams, and drill holes that tap into aquifers.

Many scientists have assumed that the composition of microbial communities in the deep subsurface is primarily shaped by local environmental pressures on microbial survival such as temperature, acidity, and oxygen concentration. This process, environmental selection, can take years to millennia to cause significant community-level changes in slow-growing communities like the subsurface.

Jul 14, 2022

Dr. Stephen Moran, PhD — Reimagining Nuclear Medicine — Advanced Accelerator Applications, Novartis

Posted by in categories: biotech/medical, chemistry, economics, health, quantum physics

Reimagining Nuclear Medicine — Dr. Stephen Moran, Ph.D., Global Program Head, Neuroendocrine Tumors & Other Radiosensitive Cancers, Advanced Accelerator Applications, Novartis

Dr. Stephen Moran, Ph.D., is Global Program Head, Neuroendocrine Tumors & Other Radiosensitive Cancers, for Advanced Accelerator Applications (AAA —, a Novartis company and also a member of the Oncology Development Unit Leadership Team at Novartis.

Continue reading “Dr. Stephen Moran, PhD — Reimagining Nuclear Medicine — Advanced Accelerator Applications, Novartis” »

Jul 13, 2022

Researchers find the missing photonic link to enable an all-silicon quantum internet

Posted by in categories: biotech/medical, chemistry, cybercrime/malcode, internet, quantum physics, supercomputing

Researchers at Simon Fraser University have made a crucial breakthrough in the development of quantum technology.

Their research, published in Nature today, describes their observations of more than 150,000 silicon “T center” photon-spin qubits, an important milestone that unlocks immediate opportunities to construct massively scalable quantum computers and the quantum internet that will connect them.

Quantum computing has to provide computing power well beyond the capabilities of today’s supercomputers, which could enable advances in many other fields, including chemistry, , medicine and cybersecurity.

Jul 12, 2022

UK’s first industrial-scale carbon capture and usage plant

Posted by in categories: chemistry, energy, food

The plant seen here will capture 40,000 tonnes of carbon dioxide (CO2) each year – 100 times more than the UK’s current largest facility and equivalent to taking 20,000 cars off the roads. The £20 million investment has been completed by Northwich-based Tata Chemicals Europe, one of Europe’s leading producers of sodium carbonate, salt and sodium bicarbonate.

The project will help to unlock the future of carbon capture and utilisation, as it proves the viability of the technology at a large scale, removing CO2 from gas power plant emissions for use in high-end manufacturing applications.

In a world-first, the captured emissions are being purified to food and pharmaceutical grade, then used as raw material for a form of sodium bicarbonate that will be known as Ecokarb. This unique and innovative manufacturing process is patented in the UK, with further patents pending in key territories around the world. Ecokarb will be exported to more than 60 countries.

Continue reading “UK’s first industrial-scale carbon capture and usage plant” »

Jul 11, 2022

“Brain” on a Chip — Toward a Precision Neuroelectronic Interface | Hongkun Park | TEDxKFAS

Posted by in categories: bioengineering, biotech/medical, chemistry, cyborgs, nanotechnology, neuroscience, quantum physics

Brain-machine interfaces (BMIs) are devices that enable direct communication/translation between biological neuronal networks (e.g. a brain or a spine) and external machines. They are currently being used as a tool for fundamental neuroscience research and also for treating neurological disorders and for manipulating neuro-prosthetic devices. As remarkable as today’s BMIs are, however, the next generation BMIs will require new hardware and software with improved resolution and specificity in order to precisely monitor and control the activities of complex neuronal networks. In this talk, I will describe my group’s effort to develop new neuroelectronic devices enabled by silicon nanotechnology that can serve as high-precision, highly multiplexed interface to neuronal networks. I will then describe the promises, as well as potential pitfalls, of next generation BMIs. Hongkun Park is a Professor of Chemistry and Chemical Biology and a Professor of Physics at Harvard University. He is also an Institute Member of the Broad Institute of Harvard and MIT and a member of the Harvard Center for Brain Science and Harvard Quantum Optics Center. He serves as an associate editor of Nano Letters. His research interests lie in exploring solid-state photonic, optoelectronic, and plasmonic devices for quantum information processing as well as developing new nano-and microelectronic interfaces for living cells, cell networks, and organisms. Awards and honors that he received include the Ho-Am Foundation Prize in Science, NIH Director’s Pioneer Award, and the US Vannevar Bush Faculty Fellowship, the David and Lucile Packard Foundation Fellowship for Science and Engineering, the Alfred P. Sloan Research Fellowship, and the Camille Dreyfus Teacher-Scholar Award. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Jul 11, 2022

Researchers build longest highly-conductive molecular nanowire

Posted by in categories: chemistry, nanotechnology

As our devices get smaller and smaller, the use of molecules as the main components in electronic circuitry is becoming ever more critical. Over the past 10 years, researchers have been trying to use single molecules as conducting wires because of their small scale, distinct electronic characteristics, and high tunability. But in most molecular wires, as the length of the wire increases, the efficiency by which electrons are transmitted across the wire decreases exponentially. This limitation has made it especially challenging to build a long molecular wire—one that is much longer than a nanometer—that actually conducts electricity well.

Columbia researchers announced today that they have built a nanowire that is 2.6 nanometers long, shows an unusual increase in conductance as the wire length increases, and has quasi-metallic properties. Its excellent conductivity holds great promise for the field of molecular electronics, enabling electronic devices to become even tinier. The study is published today in Nature Chemistry.

Jul 11, 2022

New molecular wires for single-molecule electronic devices

Posted by in categories: chemistry, engineering, particle physics

Scientists at Tokyo Institute of Technology designed a new type of molecular wire doped with organometallic ruthenium to achieve unprecedentedly higher conductance than earlier molecular wires. The origin of high conductance in these wires is fundamentally different from similar molecular devices and suggests a potential strategy for developing highly conducting “doped” molecular wires.

Since their conception, researchers have tried to shrink electronic devices to unprecedented sizes, even to the point of fabricating them from a few molecules. Molecular wires are among the building blocks of such minuscule contraptions, and many researchers have been developing strategies to synthesize highly conductive, stable wires from carefully designed molecules.

A team of researchers from Tokyo Institute of Technology, including Yuya Tanaka, designed a novel in the form of a metal electrode-molecule-metal electrode (MMM) junction including a polyyne, an organic chain-like molecule, “doped” with a ruthenium-based unit Ru(dppe)2. The proposed design, featured in the cover of the Journal of the American Chemical Society, is based on engineering the energy levels of the conducting orbitals of the atoms of the wire, considering the characteristics of gold electrodes.

Jul 11, 2022

Israeli study: Chemical heals wounds twice as fast, could be antibiotic alternative

Posted by in categories: biotech/medical, chemistry

Researchers say ointment could become standard medication, but long path ahead; chemical ‘jams’ communication between bacteria at injury site, making healing easier.

Page 2 of 15312345678Last