Toggle light / dark theme

Elon Musk reveals his most ambitious (and detailed) plan for Mars: 1,000 spacecraft, 20 years of launches, and a self-sustaining city of one million inhabitants on Mars by 2050

At the entrance to Starbase in south Texas, a glowing sign now welcomes visitors with the words “Gateway to Mars.” The display sits in front of SpaceX facilities where giant Starship rockets are being assembled with one bold purpose in mind: Elon Musk wants to build a self-sustaining city on Mars.

In recent years he has begun to put numbers on that dream. Musk has repeatedly said that building the first sustainable city on Mars would require around 1,000 Starship rockets and roughly 20 years of launch campaigns, moving up to 100,000 people per favorable Earth-Mars alignment and eventually reaching about one million settlers plus millions of tons of cargo.

It sounds like science fiction with a project plan. Yet the language he uses, “sustainable city,” is very familiar to climate and energy experts here on Earth. So what does sustainability really mean on a frozen, air-thin world and how does that huge effort interact with the environmental crisis on our own planet?

Midair haptics and levitation may get steadier with predictable ultrasonic airflow

Acoustic streaming generated by airborne ultrasonic phased arrays plays a critical role in the performance of advanced ultrasonic technologies, including midair haptic feedback, odor delivery, and acoustic levitation. Researchers at University of Tsukuba have developed a predictive model for acoustic streaming in phased arrays by integrating three-dimensional acoustic and fluid simulations.

Airborne ultrasonic phased arrays focus ultrasonic waves at prescribed locations in space and dynamically steer them, enabling applications such as noncontact tactile feedback, odor transport, and the levitation of small objects.

Despite the nonnegligible influence of acoustic streaming—steady airflow induced by high-intensity sound fields—on tactile perception and the stability of levitated objects, reliable prediction and modeling of this phenomenon have remained challenging.

How SpaceX and XAI Will Build Moonbase Alpha and Mass Drivers

SpaceX, in collaboration with xAI, plans to build a lunar base called Moonbase Alpha using advanced technologies such as mass drivers, solar power, and Starship, aiming to make human activity on the moon visible, affordable, and sustainable ##

## Questions to inspire discussion.

Launch Infrastructure Economics.

🚀 Q: What launch costs could SpaceX’s moon infrastructure achieve? A: Mature SpaceX moon operations could reduce costs to $10/kg to orbit and $50/kg to moon surface, enabling $5,000 moon trips for people under 100kg (comparable to expensive cruise pricing), as mentioned by Elon Musk.

⚡ Q: How could lunar mass drivers scale satellite deployment? A: Lunar mass drivers using magnetic rails at 5,600 mph could launch 10 billion tons of satellites annually with 2 terawatts of power, based on 2023 San Jose State study updating 1960s-70s mass driver literature.

Starship Capabilities.

The Role of Lipids and Lipoproteins in Atherosclerosis

Activation of endothelial cells causes a monocyte recruitment cascade involving rolling, adhesion, activation and transendothelial migration (Figure 1). Selectins, especially P-selectin, mediate the initial rolling interaction of monocytes with the endothelium (32). Monocyte adherence is then promoted by endothelial cell immunoglobulin-G proteins including VCAM-1 and ICAM-1 (32). Potent chemoattractant factors such as MCP-1 and IL-8 then induce migration of monocytes into the subendothelial space (33-35). Ly6hi monocytes, versus Ly6lo, preferentially migrate into the subendothelial space to convert to proinflammatory macrophages in mice (36-38). The enhanced migration of Ly6hi versus Ly6lo monocytes likely results from increased expression of functional P-selectin glycoprotein ligand-1 (39). In addition, the number of blood monocytes originating from the bone marrow and spleen, especially Ly6hi cells, increases in response to hypercholesterolemia (36). Furthermore, hypercholesterolemia and atherosclerosis increase monocytosis in humans (40,41). Importantly, increased numbers of inflammatory CD14++ CD16+ monocytes independently predicted cardiovascular death, myocardial infarction, and stroke in patients undergoing elective coronary angiography (42). Intimal macrophages also result from proliferation of monocyte/macrophages, especially in more advanced lesions (43). During the initial fatty streak phase of atherosclerosis (Figure 1), the monocyte-derived macrophages internalize the retained apoB-containing lipoproteins, which are degraded in lysosomes, where excess free cholesterol is trafficked to the endoplasmic reticulum (ER) to be esterified by acyl CoA: cholesterol acyltransferase (ACAT), and the resulting cholesteryl ester (CE) is packaged into cytoplasmic lipid droplets, which are characteristic of foam cells (42) (Figure 2) (44,45). Modification of apoB lipoproteins via oxidation and glycation enhances their uptake through a number of receptors not down-regulated by cholesterol including CD36, scavenger receptor A, and lectin-like receptor family (see details below) (Figure 2) (46,47). Enzyme-mediated aggregation of apoB lipoproteins enhances uptake via phagocytosis (Figure 2) (48,49). In addition, native remnant lipoproteins can induce foam cell formation via a number of apoE receptors (LRP1 and VLDLR) (Figure 2) (50,51). Uptake of native LDL by fluid phase pinocytosis may also contribute to foam cell formation (Figure 2) (52,53).

Macrophage Cholesterol Metabolism. Native LDL is recognized by the LDL receptor (LDLR). The LDL is endocytosed and trafficked to lysosomes, where the cholesteryl ester (CE) is hydrolyzed to free cholesterol (FC) by the acid lipase. The FC is transported to the endoplasmic reticulum (ER) to be esterified by acyl CoA: cholesterol acyltransferase (ACAT). Increased FC in an ER regulatory pool initiates a signaling cascade resulting in down-regulation of the LDL receptor. Cholesterol regulation of the LDLR prevents foam cell formation via this receptor in the setting of hypercholesterolemia. ApoB containing lipoproteins that also contain apoE (apoE remnants, VLDL) can cause cholesterol accumulation via interaction of apoE with apoE receptors including the LRP1 and the VLDL receptor, which are not regulated by cellular cholesterol. Uptake of native LDL by fluid phase pinocytosis may also contribute to foam cell formation.

The Frontier Labs War: Opus 4.6, GPT 5.3 Codex, and the SuperBowl Ads Debacle

Questions to inspire discussion AI Model Performance & Capabilities.

🤖 Q: How does Anthropic’s Opus 4.6 compare to GPT-5.2 in performance?

A: Opus 4.6 outperforms GPT-5.2 by 144 ELO points while handling 1M tokens, and is now in production with recursive self-improvement capabilities that allow it to rewrite its entire tech stack.

🔧 Q: What real-world task demonstrates Opus 4.6’s agent swarm capabilities?

A: An agent swarm created a C compiler in Rust for multiple architectures in weeks for **$20K, a task that would take humans decades, demonstrating AI’s ability to collapse timelines and costs.

🐛 Q: How effective is Opus 4.6 at finding security vulnerabilities?

The Exploration Company completes water-impact tests for its Nyx space capsule

MILAN — The French-German aerospace company The Exploration Company completed mock splashdown tests for its Nyx space capsule, a modular, reusable spacecraft designed to transport cargo and eventually crew to low Earth orbit and beyond. The company conducted water-impact tests on a mock capsule from Jan. 13 through 28.

The testing campaign was not a full splashdown test, but a model-validation exercise carried out at the “Umberto Pugliese” towing tank facility in Italy. The company used a 135-kilogram, 1:4-scale mock-up in a 13.5-meter by 6.5-meter tank to characterize Nyx’s water-impact behavior and validate its numerical models. The testing is intended as a step toward future certification activities and subsequent splashdown activities.

“The primary objective was validation of the numerical splashdown model,” a company spokesperson told SpaceNews. “To do that, we varied release heights and velocities in a controlled way to reproduce multiple impact conditions with high repeatability.”

Future Humans: The Coming Diversity of Engineered Bodies and Synthetic Minds

For the first time in Earth’s history, one species can rewrite its own genome, rebuild its own brain, and design entirely new forms of intelligence. That combination makes Homo sapiens look less like evolution’s end point and more like a transitional form: an ancestral species whose descendants may be biological, mechanical, or something in between. The way future humans remember us may depend on how seriously our generation takes its role as the first conscious ancestor.

Imagine a descendant civilization, thousands or millions of years from now, trying to reconstruct its origins. Its members might not have bones or blood. They might be born in free-fall habitats orbiting other stars, or instantiated as software in computational substrates that current engineers can barely imagine. Their analysts would comb through archives from a small blue planet called Earth and conclude that the strange, warlike primates who built the first rockets and the first neural networks were not the culmination of evolution, but an ancestral phase.

That premise — the idea that present-day humans are an ancestral species for future humans and other intelligent beings — is beginning to migrate from science fiction into serious scientific and philosophical discussion. Advances in gene editing, synthetic biology, space medicine, brain–computer interfaces and artificial intelligence all point toward a future in which “intelligent beings” no longer form a single species, or even share a single kind of body. The more that picture comes into focus, the more it forces a rethinking of what “being human” means.

How to design a space station: Meet the Seattle company that’s helping define the look of the final frontier

How do you design a living space where there’s no up or down? That’s one of the challenges facing Teague, a Seattle-based design and innovation firm that advises space companies such as Blue Origin, Axiom Space and Voyager Technologies on how to lay out their orbital outposts.

Mike Mahoney, Teague’s senior director of space and defense programs, says the zero-gravity environment is the most interesting element to consider in space station design.

“You can’t put things on surfaces, right? You’re not going to have tables, necessarily, unless you can attach things to them, and they could be on any surface,” he told GeekWire. “So, directionality is a big factor. And knowing that opens up new opportunities. … You could have, let’s say, two scientists working in different orientations in the same area.”

/* */