Archive for the ‘particle physics’ category

Oct 30, 2020

How France overcame the odds to build a research mega-campus

Posted by in categories: biological, biotech/medical, particle physics

The result is a science park and university campus that offers degrees at all levels. It hosts more than 300 labs and advanced research equipment, such as the SOLEIL synchrotron. About 100 companies and 6 of France’s public research organizations, including the national research agency CNRS, have a presence there. That combination — of the university with national facilities — is powerful, says Price. The park accounts for an estimated 15% of France’s public and private research. About 30,000 people work or study at Saclay, and this is projected to rise to 80,000 by 2030.

The lab has no overall scientific project, and has added an extra layer of management, says Fayard, although he concedes that the coronavirus pandemic has complicated the lab’s first months. “I fear the lab will have to work hard not to fall between two stools — it is too big to be efficient, but not big enough to invest alone in major local infrastructures.”

But Oliver Brüning, a particle physicist at CERN, Europe’s particle physics lab near Geneva, Switzerland, who spent time working at LAL, says he thinks the new lab has greater weight and influence than did LAL alone.

Continue reading “How France overcame the odds to build a research mega-campus” »

Oct 30, 2020

United Kingdom lights up its unusual fusion reactor

Posted by in categories: nuclear energy, particle physics

The United Kingdom’s revamped fusion reactor, known as the Mega Amp Spherical Tokamak (MAST) Upgrade, powered up for the first time yesterday after a 7-year build. The £55 million device will be a testbed for technologies critical to all future fusion reactors, and may provide a stepping stone to a new design of energy-producing facility.

Tokamaks are the frontrunners in the decadeslong effort to generate energy by fusing light elements together. These doughnut-shaped vessels contain a superhot ionized gas—or plasma—of hydrogen isotopes that is constrained with powerful magnets and heated by microwaves and particle beams. (ITER, a gigantic tokamak under construction in France, is a major focus of global efforts to realize fusion power.)

MAST is a variation on the standard tokamak; it is shaped more like a cored apple than a doughnut. Researchers believe that shape can confer greater stability in the roiling plasma than a doughnut-shaped tokamak, but it is less well understood than the traditional design. MAST first tested the concept on a large scale starting in 1999 and has now been upgraded with extra heating power, new technology for extracting heat from the plasma, and other improvements. A parallel effort at the Princeton Plasma Physics Laboratory, called the National Spherical Torus Experiment (NSTX), was similarly upgraded. Soon after restarting in 2016, however, NSTX suffered a magnet failure and is now being rebuilt.

Oct 30, 2020

The world’s smallest LED will be 3 atoms thick!

Posted by in categories: materials, particle physics

Circa 2015.

LEDs have come a long ways. From the early 70s when a bulky LED watch cost thousands of dollars to LG’s announcement last month that it had created an OLED TV as thin as a magazine, these glowing little bits of magic have become wonderfully cheap and impossibly small. But guess what: they’re about to get much smaller.

A team scientists from the University of Washington just built the world’s thinnest possible LED for use as a light source in electronics. It’s just three atoms thick. No, not three millimeters. Not three nanometers. Three atoms.

Continue reading “The world’s smallest LED will be 3 atoms thick!” »

Oct 30, 2020

Episode 22 — The Far Future Of Our Universe (Turtles All the Way Down)

Posted by in categories: alien life, particle physics

This is the episode for anyone who has wondered about the fundamental structure of the universe and its extremely distant future — a time which is so distant that for all practical purposes, it’s almost synonymous with eternity. Black Holes, Fundamental Physics, and the meaning behind the cosmological catchphrase — Turtles All the Way Down. Please listen.

What happens when all the stars in our cosmos’ galaxies burn out; with little or no hydrogen gas left to fuel star formation; and everything pretty much turns to toast? It will presage an age of black holes where extremely low temperatures and fundamental particle decay will alleviate life as we know it. This universal endgame in an almost infinite far future may actually be a Dark Age where little or nothing can happen. And if it does, only on the longest timescales. Yale University astrophysicist Gregory Laughlin and I discuss these and other issues in this cosmological “turtles all the way down” episode of the podcast.

Continue reading “Episode 22 --- The Far Future Of Our Universe (Turtles All the Way Down)” »

Oct 29, 2020

Researchers break magnetic memory speed record

Posted by in categories: computing, particle physics

Spintronic devices are attractive alternatives to conventional computer chips, providing digital information storage that is highly energy efficient and also relatively easy to manufacture on a large scale. However, these devices, which rely on magnetic memory, are still hindered by their relatively slow speeds, compared to conventional electronic chips.

In a paper published in the journal Nature Electronics, an international team of researchers has reported a new technique for magnetization switching—the process used to “write” information into magnetic memory—that is nearly 100 times faster than state-of-the-art spintronic devices. The advance could lead to the development of ultrafast magnetic memory for computer chips that would retain data even when there is no power.

In the study, the researchers report using extremely short, 6-picosecond to switch the magnetization of a thin film in a magnetic device with great energy efficiency. A picosecond is one-trillionth of a second.

Oct 28, 2020

World’s first-ever graphene hiking boots unveiled

Posted by in categories: materials, particle physics

Circa 2018

The world’s first-ever hiking boots to use graphene have been unveiled by The University of Manchester and British brand inov-8.

Building on the international success of their pioneering use of graphene in trail running and fitness shoes last summer, the brand is now bringing the to a market recently starved of innovation.

Continue reading “World’s first-ever graphene hiking boots unveiled” »

Oct 27, 2020

A major milestone for an underground dark matter search experiment

Posted by in categories: biotech/medical, cosmology, particle physics

Crews working on the largest U.S. experiment designed to directly detect dark matter completed a major milestone last month, and are now turning their sights toward startup after experiencing some delays due to global pandemic precautions.

U.S. Department of Energy officials on Sept. 21 formally signed off on project completion for LUX-ZEPLIN, or LZ: an ultrasensitive experiment that will use 10 metric tons of liquid xenon to hunt for signals of interactions with theorized dark matter particles called WIMPs, or weakly interacting massive particles. DOE’s project completion milestone is called Critical Decision 4, or CD-4.

Dark matter makes up an estimated 85 percent of all matter in the universe. We know it’s there because of its observed gravitational effects on normal matter, but we don’t yet know what it is. LZ is designed to detect the two flashes of light that occur if a WIMP interacts with the nucleus of a xenon atom.

Oct 26, 2020

Scientists create the 5th form of matter for 6 minutes

Posted by in categories: particle physics, quantum physics

It’s exotic, incredibly cold stuff.

Oct 26, 2020

Scientists see ‘rarest event ever recorded’ in search for dark matter

Posted by in categories: cosmology, particle physics

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Oct 26, 2020

Quantum Physics Milestone: Controlled Transport of Stored Light

Posted by in categories: particle physics, quantum physics

Patrick Windpassinger and his team demonstrate how light stored in a cloud of ultra-cold atoms can be transported by means of an optical conveyor belt.

A team of physicists led by Professor Patrick Windpassinger at Johannes Gutenberg University Mainz (JGU) has successfully transported light stored in a quantum memory over a distance of 1.2 millimeters. They have demonstrated that the controlled transport process and its dynamics has only little impact on the properties of the stored light. The researchers used ultra-cold rubidium-87 atoms as a storage medium for the light as to achieve a high level of storage efficiency and a long lifetime.

“We stored the light by putting it in a suitcase so to speak, only that in our case the suitcase was made of a cloud of cold atoms. We moved this suitcase over a short distance and then took the light out again. This is very interesting not only for physics in general, but also for quantum communication, because light is not very easy to ‘capture’, and if you want to transport it elsewhere in a controlled manner, it usually ends up being lost,” said Professor Patrick Windpassinger, explaining the complicated process.

Page 1 of 22812345678Last