Blog

Archive for the ‘particle physics’ category

Apr 18, 2017

Bizarre Superfluid with Negative Mass Created in a Lab

Posted by in category: particle physics

Scientists have created a new superfluid that has a negative mass, meaning that if it’s pushed to the right, it accelerates to the left and vice versa.


A cloud of supercooled atoms that behaves as a superfluid has demonstrated a negative mass, meaning it accelerates opposite to the direction it’s pushed.

Read more

Apr 17, 2017

DeepMind CEO, “Artificial Intelligence (AI) invents new knowledge and teaches human new theories”

Posted by in categories: entertainment, particle physics, robotics/AI

Google’s DeepMind CEO Demis Hassabis shows that AI doesn’t only learn from human knowledge, but also creates new knowledge. AlphaGo has it own creativity and intuition, inventing new knowledge and strategies about Go Game for human professionals to study in 2017.

Go game was invented in ancient China more than 2,500 years ago, is an abstract strategy board game, aiming to surround more territory than the opponent for two players. It is believed to be the oldest board game continuously played today. Despite its relatively simple rules, Go is very complex, even more so than chess, and possesses more possibilities than the total number of atoms in the visible universe. Compared to chess, Go has both a larger board with more scope for play and longer games, and, on average, many more alternatives to consider per move.

Continue reading “DeepMind CEO, ‘Artificial Intelligence (AI) invents new knowledge and teaches human new theories’” »

Apr 10, 2017

Magnetic Fields Likely Make Or Break Life As We Know It

Posted by in categories: alien life, particle physics

Like raging Piranha, solar wind particles apparently can and do strip many rocky planets of most of their atmospheres. At least those that have lost their global magnetic fields.

Read more

Apr 6, 2017

Electronic synapses that can learn : towards an artificial brain?

Posted by in categories: biological, particle physics, robotics/AI

© Sören Boyn / CNRS/Thales physics joint research unit.

Artist’s impression of the electronic synapse: the particles represent electrons circulating through oxide, by analogy with neurotransmitters in biological synapses. The flow of electrons depends on the oxide’s ferroelectric domain structure, which is controlled by electric voltage pulses.

Download the press release : PR Synapses

Continue reading “Electronic synapses that can learn : towards an artificial brain?” »

Apr 4, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials

Posted by in categories: materials, particle physics

A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources.

“Closely spaced and in our environment are constantly interacting, attracting and repelling each other,” said Zubin Jacob, an assistant professor of electrical and computer engineering at Purdue University. “Such interactions ultimately enable a myriad of phenomena, such as the sticky pads on gecko feet, as well as photosynthesis.”

Typically, these interactions occur when atoms and molecules are between 1 to 10 nanometers apart, or roughly 1/10,000th the width of a human hair.

Continue reading “Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials” »

Mar 31, 2017

Do ripples in space-time herald a new theory of gravity?

Posted by in categories: cosmology, particle physics, quantum physics

Quantum gravity is a theoretical attempt to reconcile general relativity and the quantum field theories of particle physics. The theory holds that space and time are both quantized in a way that quantum field theory doesn’t account for. Attempts to find evidence in support of the theory have focused on the gravitational effects of black holes. Now, some are using the data collected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) project that has now detected two instances of gravitational waves from the collision of black holes. And there are hints that the data has the evidence the researchers are looking for.


But Afshordi’s idea overthrows what physicists believed they knew about black holes. In Albert Einstein’s theory of general relativity, the event horizon of a black hole – the surface beyond which there is no escape – is insubstantial. Nothing special happens upon crossing it, just that there is no turning around later. If Afshordi is right, however, the inside of the black hole past the event horizon no longer exists. Instead, a Planck-length away from where the horizon would have been, quantum gravitational effects become large, and space-time fluctuations go wild. (The Planck length is a minuscule distance: about 10–35 metres, or 10–20 times the diameter of a proton.) It’s a complete break with relativity.

When he heard of the LIGO results, Afshordi realised that his so-far entirely theoretical idea could be observationally tested. If event horizons are different than expected, the gravitational-wave bursts from merging black holes should be different, too. Events picked up by LIGO should have echoes, a subtle but clear signal that would indicate a departure from standard physics. Such a discovery would be a breakthrough in the long search for a quantum theory of gravity. ‘If they confirm it, I should probably book a ticket to Stockholm,’ Afshordi said, laughing.

Continue reading “Do ripples in space-time herald a new theory of gravity?” »

Mar 30, 2017

New research into light particles challenges understanding of quantum theory

Posted by in categories: particle physics, quantum physics, space

Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.

Researchers at the University of East Anglia (UEA) have shown that when photons — the fundamental particles of light — are created in pairs, they can emerge from different, rather than the same, location.

The ground-breaking research could have significant implications for , the theoretical basis of modern physics. Until now, the general assumption was that such photon pairs necessarily originate from single points in space.

Continue reading “New research into light particles challenges understanding of quantum theory” »

Mar 28, 2017

Mind-Blowing New Theory Connects Black Holes, Dark Matter, and Gravitational Waves

Posted by in categories: cosmology, particle physics

The past few years have been incredible for physics discoveries. Scientists spotted the Higgs boson, a particle they’d been hunting for almost 50 years, in 2012, and gravitational waves, which were theorized 100 years ago, in 2016. This year, they’re slated to take a picture of a black hole. So, thought some theorists, why not combine all of the craziest physics ideas into one, a physics turducken? What if we, say, try to spot the dark matter radiating off of black holes through their gravitational waves?

Read more

Mar 25, 2017

IBM Makes a Huge Leap Forward in Data Storage

Posted by in categories: computing, particle physics

How small is the world’s smallest hard drive? Smaller than you’d believe.

Read more

Mar 24, 2017

Theoretical Physicists Suggest There’s a Portal Linking the Standard Model to Dark Physics

Posted by in categories: cosmology, particle physics, quantum physics, space travel

Theoretical physicists have put forward a new hypothesis that aims to connect the world of visible physics to the hidden forces of our Universe: what if there’s a portal that bridges the gap between the standard model to dark matter and dark energy?

The idea is that the reason we struggle to understand things such as dark matter and dark energy isn’t because they don’t exist — it’s because we’ve been oblivious to a portal through which regular particles and these ‘dark particles’ interact. And it’s something that could be tested experimentally.

The idea of portals in the Universe might sound pretty crazy, but let’s be clear for a second: we’re talking portals on the quantum, teeny-tiny scale here — nothing that you could drive a spacecraft through.

Continue reading “Theoretical Physicists Suggest There’s a Portal Linking the Standard Model to Dark Physics” »

Page 1 of 8912345678Last