Blog

Archive for the ‘particle physics’ category

Oct 15, 2019

Physicists have found quasiparticles that mimic hypothetical dark matter axions

Posted by in categories: cosmology, particle physics

These subatomic particles could make up dark matter in the cosmos. A mathematically similar phenomenon occurs in a solid material.

Oct 15, 2019

Unique dendritic sticky particles formed by harnessing ‘liquid chaos’

Posted by in categories: engineering, food, nanotechnology, particle physics

New research from North Carolina State University shows that unique materials with distinct properties akin to those of gecko feet—the ability to stick to just about any surface—can be created by harnessing liquid-driven chaos to produce soft polymer microparticles with hierarchical branching on the micro- and nanoscale.

The findings, described in the journal Nature Materials, hold the potential for advances in gels, pastes, foods, nonwovens and coatings, among other formulations.

The soft dendritic particle materials with unique adhesive and structure-building properties can be created from a variety of polymers precipitated from solutions under special conditions, says Orlin Velev, S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State and corresponding author of the paper.

Oct 15, 2019

How the Neutrino’s Tiny Mass Could Help Solve Big Mysteries

Posted by in categories: cosmology, particle physics

The KATRIN experiment is closing in on the mass of the neutrino, which could point to new laws of particle physics and shape theories of cosmology.

Oct 15, 2019

Stretched photons recover lost interference

Posted by in categories: computing, cosmology, particle physics, quantum physics

The smallest pieces of nature—individual particles like electrons, for instance—are pretty much interchangeable. An electron is an electron is an electron, regardless of whether it’s stuck in a lab on Earth, bound to an atom in some chalky moon dust or shot out of an extragalactic black hole in a superheated jet. In practice, though, differences in energy, motion or location can make it easy to tell two electrons apart.

One way to test for the similarity of particles like electrons is to bring them together at the same time and place and look for interference—a that arises when particles (which can also behave like waves) meet. This interference is important for everything from fundamental tests of quantum physics to the speedy calculations of quantum computers, but creating it requires exquisite control over particles that are indistinguishable.

With an eye toward easing these requirements, researchers at the Joint Quantum Institute (JQI) and the Joint Center for Quantum Information and Computer Science (QuICS) have stretched out multiple photons—the quantum particles of light—and turned three distinct pulses into overlapping quantum waves. The work, which was published recently in the journal Physical Review Letters, restores the interference between photons and may eventually enable a demonstration of a particular kind of quantum supremacy—a clear speed advantage for computers that run on the rules of quantum physics.

Oct 14, 2019

Quantum state of single electrons controlled by ‘surfing’ on sound waves

Posted by in categories: computing, particle physics, quantum physics

Researchers have successfully used sound waves to control quantum information in a single electron, a significant step towards efficient, robust quantum computers made from semiconductors.

The international team, including researchers from the University of Cambridge, sent high-frequency across a modified to direct the behaviour of a , with efficiencies in excess of 99 percent. The results are reported in the journal Nature Communications.

A quantum computer would be able to solve previously unsolvable computational problems by taking advantage of the strange behaviour of particles at the subatomic scale, and such as entanglement and superposition. However, precisely controlling the behaviour of quantum particles is a mammoth task.

Oct 14, 2019

New approach for the simulation of quantum chemistry—modelling the molecular architecture

Posted by in categories: chemistry, particle physics, quantum physics, supercomputing

Searching for new substances and developing new techniques in the chemical industry: tasks that are often accelerated using computer simulations of molecules or reactions. But even supercomputers quickly reach their limits. Now researchers at the Max Planck Institute of Quantum Optics in Garching (MPQ) have developed an alternative, analogue approach. An international team around Javier Argüello-Luengo, Ph.D. candidate at the Institute of Photonic Sciences (ICFO), Ignacio Cirac, Director and Head of the Theory Department at the MPQ, Peter Zoller, Director at the Institute of Quantum Optics and Quantum Information in Innsbruck (IQOQI), and others have designed the first blueprint for a quantum simulator that mimics the quantum chemistry of molecules. Like an architectural model can be used to test the statics of a future building, a molecule simulator can support investigating the properties of molecules. The results are now published in the scientific journal Nature.

Using hydrogen, the simplest of all , as an example, the global team of physicists from Garching, Barcelona, Madrid, Beijing and Innsbruck theoretically demonstrate that the quantum simulator can reproduce the behaviour of a real molecule’s . In their work, they also show how experimental physicists can build such a simulator step by step. “Our results offer a new approach to the investigation of phenomena appearing in quantum chemistry,” says Javier Argüello-Luengo. This is highly interesting for chemists because classical computers notoriously struggle to simulate chemical compounds, as molecules obey the laws of quantum physics. An electron in its shell, for example, can rotate to the left and right simultaneously. In a compound of many particles, such as a molecule, the number of these parallel possibilities multiplies. Because each electron interacts with each other, the complexity quickly becomes impossible to handle.

As a way out, in 1982, the American physicist Richard Feynman suggested the following: We should simulate quantum systems by reconstructing them as simplified models in the laboratory from , which are inherently quantum, and therefore implying a parallelism of the possibilities by default. Today, quantum simulators are already in use, for example to imitate crystals. They have a regular, three-dimensional atomic lattice which is imitated by several intersecting , the “optical lattice.” The intersection points form something like wells in an egg carton into which the are filled. The interaction between the atoms can be controlled by amplifying or attenuating the rays. This way researchers gain a variable model in which they can study atomic behavior very precisely.

Oct 13, 2019

Welcome indoors, solar cells

Posted by in categories: internet, particle physics, solar power, sustainability

Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity. The power they produce is low, but is probably enough to feed the millions of products that the internet of things will bring online.

As the internet of things expands, it is expected that we will need to have millions of products online, both in public spaces and in homes. Many of these will be the multitude of sensors to detect and measure moisture, particle concentrations, temperature and other parameters. For this reason, the demand for small and cheap sources of renewable energy is increasing rapidly, in order to reduce the need for frequent and expensive battery replacements.

This is where organic solar cells come in. Not only are they flexible, cheap to manufacture and suitable for manufacture as large surfaces in a printing press, they have one further advantage: the light-absorbing layer consists of a mixture of donor and acceptor materials, which gives considerable flexibility in tuning the solar cells such that they are optimised for different spectra – for light of different wavelengths.

Oct 12, 2019

Neutrinovoltaic Technology is Opening Up the Future of Sustainable Energy

Posted by in categories: climatology, particle physics, solar power, sustainability

BERLIN, August 21, 2019 (Newswire.com) — The Neutrino Energy Group cooperates with a worldwide team of scientists and various international research centers, which deal with application research, the conversion of invisible radiation spectra of the sun, among other things the neutrinos (high-energy particles, which ceaselessly reach the earth) in electric power.

Is renewable energy hurting consumers?

During the last decade or so, consumers around the world have been encouraged to install solar panels on top of their houses. In certain climates, these rooftop photovoltaic installations can more than cover the electrical needs of an individual home, and many solar-equipped houses feature photovoltaic systems that wire directly into the grid. At times when the home has excess solar-generated electricity left over, this energy feeds back into the grid and helps out with the electricity needs of other energy company customers.

Oct 11, 2019

Dark matter breakthrough: Mystery particle can be heard — ‘Like fine tuning a radio’

Posted by in categories: cosmology, particle physics

DARK MATTER researchers could be on the verge of cracking the cosmic mystery, thanks to a revolutionary device that will “listen” for dark matter particles.

Oct 11, 2019

Unlocking a 140-year-old secret in physics

Posted by in categories: computing, mobile phones, particle physics

Semiconductors are the basic building blocks of today’s digital, electronic age, providing us a multitude of devices that benefit our modern life, including computer, smartphones and other mobile devices. Improvements in semiconductor functionality and performance are likewise enabling next-generation applications of semiconductors for computing, sensing and energy conversion. Yet researchers have long struggled with limitations in our ability to fully understand the electronic charges inside semiconductor devices and advanced semiconductor materials, limiting our ability to drive further advances.

In a new study in the journal Nature, an IBM Research-led collaboration describes an exciting breakthrough in a 140-year-old mystery in physics—one that enables us to unlock the physical characteristics of semiconductors in much greater detail and aid in the development of new and improved materials.

To truly understand the physics of semiconductors, we first need to know the fundamental properties of the inside the materials, whether those particles are positive or negative, their speed under an applied electric field and how densely they are packed in the material. Physicist Edwin Hall found a way to determine those properties in 1879, when he discovered that a magnetic field will deflect the movement of electronic charges inside a conductor and that the amount of deflection can be measured as a voltage perpendicular to the flow of charge as shown in Fig. 1a. This voltage, known as the Hall voltage, unlocks essential information about the charge carriers in a semiconductor, including whether they are negative electrons or positive quasi-particles called “holes,” how fast they move in an or their “mobility” (µ) and their density (n) inside the semiconductor.

Page 1 of 16712345678Last