In inertial confinement fusion, a capsule of fuel begins at temperatures near zero and pressures close to vacuum. When lasers compress that fuel to trigger fusion, the material heats up to millions of degrees and reaches pressures similar to the core of the sun. That process happens within a miniscule amount of space and time.
To understand this process, scientists need to know about the large-scale conditions, like temperature and pressure, throughout the target chamber. But they also want detailed information about the material—and the atoms—contained within. Until now, computer models have struggled to bridge that gap across the wide range of conditions encountered in such experiments.









