Blog

Archive for the ‘particle physics’ category

Jun 19, 2018

Can Thousands of Smartphones Help Detect Cosmic Rays?

Posted by in categories: cosmology, mobile phones, particle physics

Your smartphone has a particle detector on it, and scientists want you to help them uncover how the universe really works and maybe even discover the true nature of dark matter. There are just a few bugs to work out.

High-energy particles from space, called cosmic rays, constantly bombard the Earth. There are all sorts of things we might be able to learn about the universe by studying those particles. We’ve previously discussed high-tech, expensive equipment used to monitor them. But the physicists behind a new project want your smartphone to help gather data on these cosmic rays, hopefully revealing new insights into dark matter and other strange phenomena.

“This project can only be successful with a large number of people,” Piotr Homola, associate professor at the Institute of Nuclear Physics at the Polish Academy of Sciences, told Gizmodo. “We need public engagement on an unprecedented scale.”

Continue reading “Can Thousands of Smartphones Help Detect Cosmic Rays?” »

Jun 19, 2018

Interaction of paired and lined-up electrons can be manipulated in semiconductors

Posted by in categories: computing, particle physics, quantum physics

The way that electrons paired as composite particles or arranged in lines interact with each other within a semiconductor provides new design opportunities for electronics, according to recent findings in Nature Communications.

What this means for , such as those that send information throughout , is not yet clear, but hydrostatic can be used to tune the interaction so that electrons paired as composite particles switch between paired, or “superconductor-like,” and lined-up, or “nematic,” phases. Forcing these phases to interact also suggests that they can influence each other’s properties, like stability – opening up possibilities for manipulation in electronic devices and quantum computing.

“You can literally have hundreds of different phases of electrons organizing themselves in different ways in a semiconductor,” said Gábor Csáthy, Purdue professor of physics and astronomy. “We found that two in particular can actually talk to each other in the presence of hydrostatic pressure.”

Continue reading “Interaction of paired and lined-up electrons can be manipulated in semiconductors” »

Jun 17, 2018

Combining Laser And Particle Beams For Interstellar Travel

Posted by in categories: engineering, particle physics, space travel

By jan mcharg, texas A&M university college of engineering

A new technology combining a laser beam and a particle beam for interstellar propulsion could pave the way for space exploration into the vast corners of our universe. This is the focus of PROCSIMA, a new research proposal by Dr. Chris Limbach and Dr. Ken Hara, assistant professors in the Department of Aerospace Engineering at Texas A&M University.

NASA has chosen the proposal “PROCSIMA: Diffractionless Beam Propulsion for Breakthrough Interstellar Missions,” for the 2018 NASA Innovative Advanced Concepts (NIAC) phase 1 study. PROCSIMA stands for Photon-paRticle Optically Coupled Soliton Interstellar Mission Accelerator, and is meant to evoke the idea that interstellar travel is not so far away.

Continue reading “Combining Laser And Particle Beams For Interstellar Travel” »

Jun 16, 2018

A New Study Details Everything That Would Be Needed For An Interstellar Journey To Proxima Centauri

Posted by in categories: particle physics, space travel

Scientists have determined the minimum amount of crew members needed for a 6,300-year journey to Proxima b.

A team of French scientists have recently published a new study detailing everything that would be needed if humans were to one day make the long interstellar journey to Proxima Centauri to start a new life and civilization. The research went to great lengths to determine the correct amount of people that would ensure a successful voyage to Proxima b.

The study was conducted by particle physicist Dr. Camille Beluffi and Dr. Frederic Marin from the Astronomical Observatory of Strasbourg and marks the second study conducted on such an interstellar journey to Proxima b, as ScienceAlert reported.

Continue reading “A New Study Details Everything That Would Be Needed For An Interstellar Journey To Proxima Centauri” »

Jun 15, 2018

£720m Large Hadron Collider upgrade ‘could upend particle physics’

Posted by in category: particle physics

Collider will be far more sensitive to anomalies that could lead to entirely new theories of the universe.

Read more

Jun 14, 2018

Brains May Teeter Near Their Tipping Point

Posted by in categories: neuroscience, particle physics

In a renewed attempt at a grand unified theory of brain function, physicists now argue that brains optimize performance by staying near — though not exactly at — the critical point between two phases.

Read more

Jun 14, 2018

Scientists Have Found Interstellar Dust on Earth That’s Older Than Our Solar System

Posted by in categories: particle physics, space travel

This ancient interstellar dust formed the Earth and the solar system.


Particles collected from Earth’s upper atmosphere, originally deposited by comets, are older than our Solar System, scientists say – and these fine bits of interstellar dust could teach us about how planets and stars form from the very beginning.

These cosmic particles have lived through at least 4.6 billion years and travelled across incredible distances, according to the new research into their chemical composition.

Continue reading “Scientists Have Found Interstellar Dust on Earth That’s Older Than Our Solar System” »

Jun 12, 2018

The KATRIN Tritium Neutrino experiment: A giant scale for the tiniest particles starts

Posted by in category: particle physics

Neutrinos are so tiny and inconspicuous that physicists believed for a long time they had no mass. Now, a massive device that scientists say will determine the mass of neutrinos has begun operation in Karlsruhe.

What is the exact mass of the three known kinds of neutrinos? Any answers? No? Well, don’t worry, because nobody knows. Not yet. Electron, muon and tau neutrinos are simply too difficult to grasp for scientists.

Read more

Jun 6, 2018

The LHC Has Detected The Higgs Boson Again, This Time With a Massive Twist

Posted by in category: particle physics

What would it say about the fundamental structure of the universe?


Physicists working at the Large Hadron Collider have made a major new detection of the famous Higgs boson, this time catching details on a rare interaction with one of the heaviest fundamental particles known to physics — the top quark.

The brief mingling of these incredibly rare encounters has provided physicists with important information on the nature of mass, and whether there is more to physics than the existing model predicts.

Continue reading “The LHC Has Detected The Higgs Boson Again, This Time With a Massive Twist” »

Jun 5, 2018

The Higgs Boson Has a New Friend

Posted by in category: particle physics

The Higgs boson appeared again at the world’s largest atom smasher — this time, alongside a top quark and an antitop quark, the heaviest known fundamental particles. And this new discovery could help scientists better understand why fundamental particles have the mass they do.

When scientists at the Large Hadron Collider (LHC) first confirmed the Higgs’ existence back in 2013, it was a big deal. As Live Science reported at the time, the discovery filled in the last missing piece of the Standard Model of physics, which explains the behavior of tiny subatomic particles. It also confirmed physicists’ basic assumptions about how the universe works. But simply finding the Higgs didn’t answer every question scientists have about how the Higgs behaves. This new observation starts to fill in the gaps.

As the European Organization for Nuclear Research (CERN), the scientific organization that operates the LHC, explained in a statement, one of the most significant mysteries in particle physics is the major mass differences between fermions, the particles that make up matter. An electron, for example, is a bit less than one three-millionth the mass of a top quark. Researchers believe that the Higgs boson, with its role (as Live Science previously explained) in giving rise to mass in the universe, could be the key to that mystery. [Top 5 Implications of Finding the Higgs Boson ].

Continue reading “The Higgs Boson Has a New Friend” »

Page 1 of 10712345678Last