Toggle light / dark theme

This crystal sings back: Study sheds light on magnetochiral instability

Researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have reported the first observation of a dynamic magnetochiral instability in a solid-state material. Their findings, published in Nature Physics, bridge ideas from nuclear and high-energy physics with materials science and condensed matter physics to explain how the interplay between symmetry and magnetism can amplify electromagnetic waves.

A material’s behavior is heavily influenced by its symmetries. One unique symmetry of interest to many physicists is chirality. Chiral materials have non-superimposable mirror images, like a right and left hand. For physicists like Fahad Mahmood, Rafael Fernandes and Jorge Noronha, the nonlinear interaction between chiral materials and light is of particular interest. How do these materials respond when light triggers effects beyond the straightforward, linear response?

“If I have a shiny crystal and I put a red laser on it, I’ll get red light back; that’s a linear response, as the frequencies—or colors—of the incoming and outgoing light are the same,” Mahmood said. “You can go a little further and try to excite some frequency so that it sends back a different color: you put red light on something, and it shines back as green, blue or yellow. That’s nonlinear response.”

Dr. Marco de Baar, Ph.D. — DIFFER & TU/e — How Plasma Control Will Make Fusion Power Possible

How Plasma Control Will Make Fusion Power Possible — Dr. Marco De Baar Ph.D. — Dutch Institute for Fundamental Energy Research (DIFFER) / TU Eindhoven.


Dr. Marco de Baar, Ph.D. is a full professor and Chair of Plasma Fusion Operation and Control at the Mechanical Engineering Faculty of Eindhoven University of Technology (TU/e — https://www.tue.nl/en/research/resear

In addition to his work at TU/e, Dr. de Baar is also head of fusion research at the Dutch Institute for Fundamental Energy Research (DIFFER — https://www.differ.nl/) located on the TU/e campus. As member of DIFFER’s management team, he has also served as the Dutch representative in the European fusion research consortium EUROfusion (https://euro-fusion.org/).

From 2004 to 2007, Dr. de Baar headed the operations department at JET (Joint European Torus), Europe’s largest fusion experiment to date, where he was responsible for the successful operation and development of the reactor. From 2007, he was deputy project leader in the international consortium that develops the upper port launcher. He is program-leader for the Magnetohydrodynamics stabilization work package in ITER-NL (International Thermonuclear Experimental Reactor — https://www.iter.org/).

Dr. de Baar’s main scientific interest is the control of nuclear fusion plasmas, with a focus on control of Magnetohydrodynamics modes (for plasma stability) and current density profile (for performance optimization). In his research program, all elements of the control loops are considered, including actuator and sensor design, and advanced control oriented modelling. He also has a keen interest in the operations and the remote maintainability of nuclear fusion reactors.

Alkaline-loving microbes could help safeguard nuclear waste buried deep underground for thousands of years

Billions of alkaline-loving microbes could offer a new way to protect nuclear waste buried deep underground. This approach overcomes the limitations of current cement barriers, which can crack or break down over time.

One of the best ways to keep nuclear waste out of harm’s way is to bury it in geological disposal facilities. These are purpose-built containers in tunnels and vaults hundreds of meters underground. Cement is used to provide structural support, seal gaps and encapsulate waste containers. While cement is a strong material, groundwater eventually reacts with it, forming microscopic cracks and pores through which radiation could escape.

This problem is made worse because traditional cement is extremely alkaline (pH greater than 12) and corrosive, which can weaken nearby protective layers such as clay barriers, potentially compromising a facility.

Discoveries rewrite how some minerals form and dissolve

Two related discoveries detailing nanocrystalline mineral formation and dynamics have broad implications for managing nuclear waste, predicting soil weathering, designing advanced bioproducts and materials and optimizing commercial alumina production.

The two recently published studies combine detailed molecular imaging and molecular modeling to sort out how gibbsite, a common aluminum-containing mineral, forms and dissolves in exquisite detail.

Hunting for dark matter axions with a quantum-powered haloscope

Axions are hypothetical light particles that could solve two different physics problems, as they could explain why some nuclear interactions don’t violate time symmetry and are also promising dark matter candidates. Dark matter is a type of matter that does not emit, reflect or absorb light, and has never been directly observed before.

Axions are very light particles theorized to have been produced in the early universe but that would still be present today. These particles are expected to interact very weakly with ordinary matter and sometimes convert into photons (i.e., light particles), particularly in the presence of a strong magnetic field.

The QUAX (Quest for Axions/QUaerere AXion) collaboration is a large group of researchers based at different institutes in Italy, which was established to search for axions using two haloscopes located in Italy at Laboratori Nazionali di Legnaro (LNL) and Laboratori Nazionali di Frascati (LNF), respectively.

Dark Matter Breakthrough: Physicists Crack “Big Bang Theory” Puzzle

A new theoretical study suggests fusion reactors could do more than generate energy, they might also produce particles linked to dark matter. Researchers at the University of Cincinnati say they have worked out, at least on paper, how fusion reactors could produce subatomic particles known as axi

AI uncovers double-strangeness: A new double-Lambda hypernucleus

Researchers from the High Energy Nuclear Physics Laboratory at the RIKEN Pioneering Research Institute (PRI) in Japan and their international collaborators have made a discovery that bridges artificial intelligence and nuclear physics. By applying deep learning techniques to a vast amount of unexamined nuclear emulsion data from the J-PARC E07 experiment, the team identified, for the first time in 25 years, a new double-Lambda hypernucleus.

This marks the world’s first AI-assisted observation of such an exotic nucleus—an atomic nucleus containing two strange quarks. The finding, published in Nature Communications, represents a major advance in experimental nuclear physics and provides new insight into the composition of neutron star cores, one of the most extreme environments in the universe.

Bazinga! Physicists crack a ‘Big Bang Theory’ problem that could help explain dark matter

A professor at the University of Cincinnati and his colleagues have figured out something two of America’s most famous fictional physicists couldn’t: how to theoretically produce subatomic particles called axions in fusion reactors.

Particle physicists Sheldon Cooper and Leonard Hofstadter, roommates in the sitcom “The Big Bang Theory,” worked on the problem in three episodes of Season 5, but couldn’t crack it.

Now UC physics Professor Jure Zupan and his theoretical physicist co-authors at the Fermi National Laboratory, MIT and Technion–Israel Institute of Technology think they have one solution in a study published in the Journal of High Energy Physics.

At 92 He is Testing a Mitochondrial Transplant That Could Rewrite Aging | Dr John Cramer

Dr. John Cramer, 92-year-old nuclear physicist, discusses participating in the first mitochondrial transplant trial for aging and his longevity theory.
Some links are affiliate links so we will earn a commission when they are used to purchase products.

If you would like to support our channel please consider joining our Patreon / modernhealthspan.
~~~~~~~~~~~~~~
BiOptimizers — 15% off Code MHBIO: https://tinyurl.com/yt-bioptimize-202…(Magnesium Breakthrough, Gluten Guardian)
Stemregen — 10% off Code MODERN: https://tinyurl.com/yt-stemregen-2025… (Stem cell mobilization)
Renue — 15% off Code MHS: https://tinyurl.com/yt-renue-20251214 (Lipo NMN)
Seeking Health — 10% off Code Richard10: https://tinyurl.com/yt-seekinghea-202… (Histamine Nutrients)
AX3 — 20% off Code MODERN20: https://tinyurl.com/yt-ax3-20251214 (Astaxanthin)
n1o1 — 10% off Code Modern: https://tinyurl.com/yt-n1o1-20251214 (Nitric Oxide Lozenges)

These are affiliate links — using them supports the channel at no extra cost to you.
~~~~~~~~~~~~~~

Dr. John Cramer is a 92-year-old emeritus professor at the University of Washington who has spent decades researching nuclear physics and quantum mechanics. Now, he’s turned his attention to longevity, and he’s not just theorizing. Dr. Cramer is participating in Mitrix’s groundbreaking mitochondrial transplantation trial, which aims to replace damaged mitochondrial DNA with healthy versions grown in bioreactors.

In this conversation, Dr. Cramer explains why he believes mitochondrial dysfunction is the root cause of aging, not just another hallmark. He discusses how energy depletion cascades into all other aging symptoms, why previous interventions like telomere extension haven’t delivered, and what markers will be tracked throughout his trial. He also shares his personal longevity protocol, including rapamycin, senolytics, and hyperbaric oxygen therapy.

This is one of the first detailed discussions of autologous mitochondrial transplantation for aging in humans.

/* */