Toggle light / dark theme

The company says that unlike the large amounts of fuel required for a chemical rocket, the relative tiny amounts of the deuterium and helium-3 fuel mix required means “a spacecraft would launch with a fixed supply, sufficient for missions like Pluto in four years, with no mid-flight refuelling needed”. (Repost)


The Sunbird nuclear fusion rocket concept has the potential to more than halve the time to travel to Mars and cut travel time to Pluto to about four years, the UK’s Pulsar Fusion says.

The company says its in-house team has been working on the project for a decade and it is “rapidly advancing toward in-orbit testing, with components of the system’s power supply set for demonstration later this year” and then demonstrated in orbit in 2027. They hope for a production-ready Sunbird in the early 2030s.

The Sunbird concept is for the fusion-powered ‘tugs’ to be permanently based in space, able to dock on to spacecraft and propel them at high speed over vast distances. Pulsar Fusion says it foresees a compact nuclear fusion engine providing both thrust and electrical power for spacecraft, including as much as 2 MW of power on arrival at a destination.

Scientists have made liquid carbon in a lab for the first time, Interesting Engineering reported.

Liquid carbon was thought to be impossible to study under normal conditions. The material only exists for billionths of a second under extreme pressure and temperatures of about 4,500 degrees Celsius, making this record-breaking technology limitless in its potential.

Nuclear fusion, combining light atomic nuclei to release massive amounts of clean energy, has long been considered the holy grail of power generation. Fusion could change society by providing unlimited electricity without radioactive waste, helping cities, individuals, and companies save money compared to resource-intensive traditional energy methods.

The University of California San Diego is part of a new research partnership led by San Diego-based General Atomics that was recently awarded funding by the U.S. Department of Energy (DOE). The project, called the Target Injector Nexus for Experimental Development (TINEX), aims to overcome critical obstacles in developing and scaling up inertial fusion power plants.

It is one of six awards, collectively totalling $107 million, made by the DOE as part of the Fusion Innovative Research Engine (FIRE) Collaboratives.

“The TINEX project will be important for our collective efforts to make inertial fusion energy practical,” said mechanical engineering professor Javier E. Garay, director of the Fusion Engineering Institute at the UC San Diego Jacobs School of Engineering.

The government has announced a record £2.5 billion investment in fusion energy, which includes support for a prototype fusion energy plant in Nottinghamshire.

The new prototype plant, known as STEP (Spherical Tokamak for Energy Production) will be built at the site of the former West Burton A coal power station near Retford and Gainsborough. The site was chosen by the government in 2022 as the location for the project, with the project’s delivery expected to create over 10,000 jobs ranging from construction to operations. The announcement shows the government’s firm commitment to becoming a “clean energy superpower” by turbocharging innovation in an area that’s produced conventional power for generations.


The record funding for fusion research announced this week shows the UK government’s firm commitment to clean, sustainable energy.

Unmanned Aerial Vehicle (UAV) deployment has risen rapidly in recent years. They are now used in a wide range of applications, from critical safety-of-life scenarios like nuclear power plant surveillance to entertainment and hobby applications…

Astronomers from the University of Hawaiʻi’s Institute for Astronomy (IfA) have discovered the most energetic cosmic explosions yet discovered, naming the new class of events “extreme nuclear transients” (ENTs). These extraordinary phenomena occur when massive stars—at least three times heavier than our sun—are torn apart after wandering too close to a supermassive black hole. Their disruption releases vast amounts of energy visible across enormous distances.

The team’s findings appear in the journal Science Advances.

“We’ve observed stars getting ripped apart as tidal disruption events for over a decade, but these ENTs are different beasts, reaching brightnesses nearly ten times more than what we typically see,” said Jason Hinkle, who led the study as the final piece of his doctoral research at IfA. “Not only are ENTs far brighter than normal tidal disruption events, but they remain luminous for years, far surpassing the of even the brightest known supernova explosions.”

In a variety of technological applications related to chemical energy generation and storage, atoms and molecules diffuse and react on metallic surfaces. Being able to simulate and predict this motion is crucial to understanding material degradation, chemical selectivity, and to optimizing the conditions of catalytic reactions. Central to this is a correct description of the constituent parts of atoms: electrons and nuclei.

An electron is incredibly light—its mass is almost 2,000 times smaller than that of even the lightest nucleus. This mass disparity allows to adapt rapidly to changes in nuclear positions, which usually enables researchers to use a simplified “adiabatic” description of atomic motion.

While this can be an excellent approximation, in some cases the electrons are affected by nuclear motion to such an extent that we need to abandon this simplification and account for the coupling between the dynamics of electrons and nuclei, leading to so-called “non-adiabatic effects.”

This high energy output could vastly improve the world’s sustainability. With fusion, energy would be near-limitless and thus easily accessible and substantially more affordable. People could enjoy lower utility bills and consistent, reliable energy.

Watch now: How bad is a gas stove for your home’s indoor air quality?

The innovative reactor would help slow down climate change and lead to a cleaner, cooler future, while helping people save money and access clean energy. Reducing energy pollution will benefit every human, reducing the health hazards of breathing polluted air or drinking contaminated water.