Toggle light / dark theme

Abundant, low-cost, clean energy—the envisioned result if scientists and engineers can successfully produce a reliable method of generating and sustaining fusion energy—has taken one step closer to reality, as a team of researchers from the University of Texas at Austin, Los Alamos National Laboratory and Type One Energy Group has solved a longstanding problem in the field.

One of the big challenges holding back has been the ability to contain inside fusion reactors. When high-energy alpha particles leak from a reactor, that prevents the plasma from getting hot and dense enough to sustain the fusion reaction. To prevent them from leaking, engineers design elaborate magnetic confinement systems, but there are often holes in the , and a tremendous amount of computational time is required to predict their locations and eliminate them.

In their paper published in Physical Review Letters, the research team describes having discovered a shortcut that can help engineers design leak-proof magnetic confinement systems 10 times as fast as the gold standard method, without sacrificing accuracy. While several other big challenges remain for all magnetic fusion designs, this advance addresses the biggest challenge that’s specific to a type of fusion reactor first proposed in the 1950s, called a stellarator.

IN A NUTSHELL 🔬 Scientists at the University of South China have developed innovative algorithms to optimize radiation shielding for next-generation nuclear reactors. 💡 The newly created algorithms, RP-NSGA and RP-MOABC, significantly improve performance by integrating a reference-point-selection strategy with established optimization techniques. 📈 Experiments demonstrated that these algorithms achieve substantial reductions in volume and.

China conducted a secret weapon test that has caught the US intelligence community off guard. Back in August, China lit up the sky when it tested a nuclear-capable hypersonic missile, which travels faster than the speed of sound. The global shipping supply crisis might affect Christmas, thanks in part to China’s power shortage. And a man in Jiangsu Province takes drastic measures after his daughter fails to solve a math problem correctly. Watch this episode of China Uncensored for that and more of this week’s China news headlines.

Jack ma’s dirty secret | power struggle rips ant financial • jack ma’s dirty secret | power strugg…

China’s POWER SHORTAGE could cause economic collapse • china’s POWER SHORTAGE could cause ec…

YouTube demonetizes our channels, we need your support!
www.patreon.com/ChinaUncensored.
https://chinauncensored.locals.com.

We also accept bitcoin!
https://chinauncensored.tv/bitcoin.

Buy our merchandise!

In a critical fusion breakthrough, scientists from the international ITER nuclear fusion energy project have announced the completion of the sixth and final component of the reactor’s central solenoid, a magnet powerful enough to levitate an aircraft carrier.

Described as a “landmark achievement” by the 30-country ITER collaboration, the pulsed superconducting electromagnet and other completed components will be assembled at the group’s designated site in southern France.

“By integrating all the systems needed for fusion at industrial scale, ITER is serving as a massive, complex research laboratory for its 30-plus member countries, providing the knowledge and data needed to optimize commercial fusion power,” the group explained in a statement announcing the achievement.

In a landmark achievement for fusion energy, ITER has completed all components for the world’s largest, most powerful pulsed superconducting electromagnet system.

ITER is an international collaboration of more than 30 countries to demonstrate the viability of fusion—the power of the sun and stars—as an abundant, safe, carbon-free energy source for the planet.

The final component was the sixth module of the Central Solenoid, built and tested in the United States. When it is assembled at the ITER site in Southern France, the Central Solenoid will be the system’s most powerful magnet, strong enough to lift an aircraft carrier.

Lightweight lithium metal is a heavy-hitting critical mineral, serving as the key ingredient in the rechargeable batteries that power phones, laptops, electric vehicles and more. As ubiquitous as lithium is in modern technology, extracting the metal is complex and expensive. A new method, developed by researchers at Penn State and recently granted patent rights, enables high-efficiency lithium extraction—in minutes, not hours—using low temperatures and simple water-based leaching.

“Lithium powers the technologies that define our modern lives—from smartphones to electric vehicles—and has applications in grid energy storage, ceramics, glass, lubricants, and even medical and nuclear technologies,” said Mohammad Rezaee, the Centennial Career Development Professor in Mining Engineering at Penn State, who led the team that published their approach in Chemical Engineering Journal.

“But its extraction must also be environmentally responsible. Our research shows that we can extract lithium, and other , more efficiently while drastically reducing energy use, greenhouse gas emissions and waste that’s difficult to manage or dispose of.”

*Apply to join Foresight Intelligent Cooperation program:* https://foresight.org/intelligent-cooperation/
A group of scientists, engineers, and entrepreneurs in computer science, ML, cryptocommerce, and related fields who leverage those technologies to improve voluntary cooperation across humans, and ultimately AIs.

*Maarten Boudry | Will Humanity Be Subjugated by Superintelligent AIs?*
Abstract: Some people are worried that if we ever create superintelligent AIs, they might turn against us—trying to subjugate humanity, wrest control, and grab resources, much like living creatures shaped by evolution. Dan Hendrycks from the Center for AI Safety has argued that AI systems are already undergoing a form of natural selection, facing ruthless market competition in the current AI race. Will this endow them with the instinctive drives for self-preservation and dominance typical of evolved creatures? In this talk, I push back against this evolutionary doom scenario, using the framework of “Darwinian spaces” by Peter Godfrey-Smith. A better analogy for AI evolution might be the domestication of animals. Just as humans have bred dogs to be friendly and obedient, we might shape AIs in similar ways, selecting for desirable traits like helpfulness and non-aggression. Even in a highly competitive AI race, AIs are unlikely to become selfish or power-hungry. That said, we do agree with the AI doomers on one point: if we allow AIs to “go feral” and be subjected to truly blind evolution—like wild animals competing in nature—that could become very dangerous.

Bio: Dr. Maarten Boudry is a philosopher of science and first holder of the Etienne Vermeersch Chair of Critical Thinking at Ghent University. He published over 50 academic papers and two edited volumes: Science Unlimited? (2018) and Philosophy of Pseudoscience (2013). He wrote six trade books in Dutch on science and philosophy, the latest one being The Betrayal of Enlightenment (Het verraad aan de verlichting, 2025). He’s also a Roots of Progress fellow and a regular contributor to Quillette, The Conversation, The Independent and Human Progress. Substack for English writings: maartenboudry.substack.com.

Bio: Simon Friederich is an associate professor of philosophy of science at the University of Groningen, the Netherlands. He is currently focused on the philosophy of quantum theory, trying to solve the quantum measurement problem along the lines envisioned by Einstein before advanced AI makes his efforts redundant. He has also worked on the philosophy of technology, notably on nuclear energy, sustainability, and advanced AI. His thoughts on these topics have been featured in German and Dutch media. With his wife and five kids he lives in a village in the North of the Netherlands.

*Speaker Link*
https://maartenboudry.substack.com/

*Timecodes*