Toggle light / dark theme

Astrocytes enable amygdala neural representations supporting memory

A thorough study exploring how astrocytes affect fear conditioning and fear extinction in the basolateral amygdala of mice. Subpopulations of astrocytes were found to interact with neurons in such a way as to help encode representations of fear. [ https://www.nature.com/articles/s41586-025-10068-0](https://www.nature.com/articles/s41586-025-10068-0)


Gq G-protein-coupled receptor (GPCR) signalling increases astrocyte Ca2+ activity through IP3-mediated release of intracellular Ca2+ stores42,43 and hM3Dq actuation causes a Ca2+ surge preceded by prolonged quiescence, possibly due to intracellular Ca2+ depletion24,44,45. Replicating these effects in the BLA, we expressed hM3Dq in BLA astrocytes and used in vivo cyto-GCaMP6f photometry and observed that clozapine–N-oxide (CNO) injection markedly increased Ca2+ activity within around 10 min but, thereafter, decreased and remained low for at least 2 h (Fig. 2c and Extended Data Figs. 6a–e and 8e, f). A lower hM3Dq virus concentration or lower CNO dose had modest or negligible effects on Ca2+ activity and behaviour (Extended Data Fig. 6h–p). On the basis of these data, we posited that BLA astrocyte Ca2+ dynamics would be constrained by hM3Dq actuation at timepoints relevant to behavioural testing. Consistent with this supposition, hM3Dq-actuation essentially abolished Ca2+ responses to a potent stimulus (footshock) given 30 min after CNO injection (Extended Data Fig. 6f, g).

We leveraged these effects of hM3Dq actuation to test how constraining astrocyte Ca2+ dynamics affected memory acquisition, retrieval, consolidation and extinction by injecting separate groups of animals with 3 mg per kg CNO either before or immediately after F-Con, or before fear retrieval/extinction training. We found that CNO given before extinction training reduced CS-related freezing during E-Ext—consistent with impaired memory retrieval—in hM3Dq-expressing mice compared with viral controls (Fig. 2d, e). In vivo fibre photometry confirmed that this behavioural effect was accompanied by loss of CS-related astrocyte Ca2+ responses (Fig. 2f and Extended Data Fig. 7a–c). In contrast to these memory-retrieval-impairing effects, CNO had no behavioural effect when injected before or after F-Con26,27 and did not alter uncued freezing, shock-induced flinching or various measures of anxiety-like behaviour (Extended Data Fig. 7d–i). Behavioural effects were also absent when CNO was injected in mice not expressing hM3Dq or when vehicle was injected in hM3Dq-expressing animals, excluding potential non-specific CNO and hM3Dq-virus effects, respectively (Extended Data Fig. 7j–n).

We next compared these effects with those of another DREADD, hM4Di, that produces effects on cortical, striatal and (as we show here; Fig. 2g–i) BLA astrocyte Ca2+ activity that mirror those of hM3Dq, that is, increase Ca2+ transients24,46,47. Accordingly, we found that hM4Di actuation produced effects on memory retrieval that were opposite to hM3Dq: pre-Ext CNO injection produced increases in CS-related freezing and astrocyte Ca2+ responses during E-Ext in hM4Di-expressing mice compared with viral controls (Fig. 2j–l and Extended Data Fig. 8a–f). Pre-Ext hM4Di actuation also increased freezing during (CNO-free) E-Ret, indicative of a deficit in extinction memory formation, and attenuated CS-related Ca2+ activity during this test stage. This latter effect is notable given that hM3Dq actuation produced a similar extinction deficit and blunted the CS-related Ca2+ response on E-Ret (Fig. 2e and Extended Data Fig. 7b), despite the two manipulations having opposite effects on fear retrieval and neither affecting extinction memory when CNO was given before E-Ret (Extended Data Fig. 8g, h). This convergence of extinction-impairing effects suggests that extinction is sensitive to perturbations—whether increases or decreases—in astrocyte Ca2+ activity and, by extension, implies an important role for BLA astrocytes in the plastic adaptations underlying extinction memory formation.

Persistent Hemiplegic Migraine in a Child With CACNA1A Sequence Variation and New-Onset Cerebellar Atrophy: A Pediatric Stroke Mimic

Imaging results also demonstrated marked cerebellar atrophy, which is a recognized feature of CACNA1A-related disorders.13 Although the timing and progression of this abnormality are uncertain because UL last underwent brain imaging in infancy, the need for structured evaluation throughout development is clear. We also noted asymmetric fluid-attenuated inversion recovery signal in the left mesial temporal lobe, which was believed to be most consistent with postictal edema given the known overlap between CACNA1A channelopathies and seizure susceptibility.

This case highlights the diagnostic uncertainty of CACNA1A-related hemiplegic migraine and emphasizes the need for early exclusion of stroke and seizure, in addition to timely escalation of preventive therapy when symptoms persist beyond their typical timeframes. The clinical response to an increased acetazolamide dose, initiation of verapamil, and corticosteroids for cerebral edema provides additional support for current recommendations in a field where high-quality evidence remains limited.

MRI antenna can boost image quality and shorten scan times—without changing existing machines

Magnetic resonance imaging (MRI) is one of medicine’s most powerful diagnostic tools. But certain tissues deep inside the body—including brain regions and delicate structures of the eye and orbit that are of particular relevance for ophthalmology—are difficult to image clearly. The problem is not the scanner itself, but the hardware that sends and receives radio signals.

Now, researchers led by Nandita Saha, a doctoral student in the Experimental Ultrahigh Field Magnetic Resonance lab of Professor Thoralf Niendorf at the Max Delbrück Center have developed an advanced materials-based MRI antenna that overcomes these limitations—delivering enhanced images more quickly and that can be used in existing MRI machines. The research was published in Advanced Materials.

Niendorf and his team worked closely with researchers at Rostock University Medical Center, combining expertise in MRI physics with clinical ophthalmology and translational imaging. The Rostock team is also supporting clinical validation of the technology.

Emerging mechanisms of psilocybin-induced neuroplasticity

Psilocybin, a serotonergic psychedelic, is gaining attention for its rapid and sustained therapeutic effects in depression and other hard-to-treat neuropsychiatric conditions, potentially through its capacity to enhance neuronal plasticity. While its neuroplastic and therapeutic effects are commonly attributed to serotonin 2A (5-HT2A) receptor activation, emerging evidence reveals a more nuanced pharmacological profile involving multiple serotonin receptor subtypes and nonserotonergic targets such as TrkB. This review integrates current findings on the molecular interactome of psilocin (psilocybin active metabolite), emphasizing receptor selectivity, biased agonism, and intracellular receptor localization.

Astrocytes, not just neurons, found to drive fear memory signals in the amygdala

Picture a star-shaped cell in the brain, stretching its spindly arms out to cradle the neurons around it. That’s an astrocyte, and for a long time, scientists thought its job was caretaking the brain, gluing together neurons, and maintaining neural circuits. But now, a new study reveals that these supposed support cells that are spread all over the brain are as important as neurons in fear memory.

“Astrocytes are interwoven among neurons in the brain, and it seemed unlikely they were there just for housekeeping. We wanted to understand what they’re actually doing—and how they’re shaping neural activity in the process,” said Lindsay Halladay, assistant professor at the University of Arizona Department of Neuroscience and one of the study’s senior authors.

Halladay’s lab collaborated with researchers from the National Institutes of Health for this multi-institutional study, led by Andrew Holmes and Olena Bukalo of the Laboratory of Behavioral and Genomic Neuroscience.

Five Years of Ublituximab in Multiple Sclerosis: ULTIMATE I and II Open-Label Extension Study

Five years of ublituximab treatment in MultipleSclerosis demonstrated sustained reduction in relapse rates and confirmed disability progression, with safety profile consistent over time.


Question What is the long-term clinical efficacy and safety of ublituximab in people with relapsing multiple sclerosis (RMS)?

Findings In this trial including 985 adults, participants treated with continuous ublituximab for up to 5 years in the open-label extension study after completion of the randomized Study to Assess the Efficacy and Safety of Ublituximab in Participants With Relapsing Forms of Multiple Sclerosis (ULTIMATE) had significantly lower annualized relapse rate and confirmed disability progression than those initially treated with teriflunomide. The overall safety profile of ublituximab remained consistent with no new safety signals emerging with prolonged treatment.

Meaning Results suggest that early initiation of ublituximab and continued treatment over a period of 5 years provided sustained clinical benefits in participants with RMS.

Polyamine metabolism as a regulator of cellular and organismal aging

Polyamines — putrescine, spermidine, and spermine — are ubiquitous cationic molecules that are essential for cellular proliferation and homeostasis. Their intracellular concentrations decline with age, contributing to physiological and cognitive deterioration. Recent studies have revealed that spermidine supplementation extends lifespan and improves cognitive and cardiac function in various model organisms, suggesting that maintaining polyamine balance has anti-aging potential. Polyamine metabolism is tightly regulated through biosynthesis, degradation, and transport; however, age-associated upregulation of spermine oxidase (SMOX) and accumulation of its toxic byproduct acrolein promote oxidative damage and cellular senescence. Suppressing SMOX activity or polyamine degradation attenuates senescence markers and DNA damage, highlighting spermine catabolism as a therapeutic target. Polyamines also modulate epigenetic regulation, including DNA methylation and histone acetylation, thereby influencing gene expression and chromatin structure during aging. Moreover, polyamine-dependent hypusination of eIF5A sustains protein synthesis in senescent cells. These multifaceted actions indicate that polyamine metabolism integrates redox control, translational regulation, epigenetic maintenance and autophagy to determine cellular and organismal longevity. While animal studies demonstrate clear anti-aging effects of spermidine and spermine, human clinical evidence remains limited, with variable outcomes likely due to bioavailability and metabolic conversion. Future strategies combining dietary or probiotic polyamine enhancement, enzyme-targeted inhibitors, and personalized metabolic interventions hold promise for extending healthspan. Collectively, maintaining optimal polyamine homeostasis emerges as a key approach to counteract aging and age-related diseases.

Role of Dopamine in Pain

Dopamine is a member of a class of molecules called the catecholamines, which serve as neurotransmitters and hormones. In the brain, dopamine serves as a neurotransmitter and is released from nerve cells to send signals to other nerves. Outside of the nervous system, it acts as a local chemical messenger in several parts of the body.

Image Copyright: Meletios, Image ID: 71,648,629 via shutterstock.com

A number of important neurodegenerative diseases are associated with abnormal function of the dopamine system and some of the main medications used to treat those illnesses work by changing the effects of dopamine. The condition Parkinson’s disease is caused by a loss of dopamine secreting cells in a brain area called the substantia nigra.

/* */