Blog

Archive for the ‘engineering’ category

Jun 23, 2017

Atomic imperfections move quantum communication network closer to reality

Posted by in categories: engineering, quantum physics

An international team led by the University of Chicago’s Institute for Molecular Engineering has discovered how to manipulate a weird quantum interface between light and matter in silicon carbide along wavelengths used in telecommunications.

The work advances the possibility of applying quantum mechanical principles to existing optical fiber networks for secure communications and geographically distributed quantum computation. Prof. David Awschalom and his 13 co-authors announced their discovery in the June 23 issue of Physical Review X.

“Silicon carbide is currently used to build a wide variety of classical electronic devices today,” said Awschalom, the Liew Family Professor in Molecular Engineering at UChicago and a senior scientist at Argonne National Laboratory. “All of the processing protocols are in place to fabricate small quantum devices out of this material. These results offer a pathway for bringing quantum physics into the technological world.”

Continue reading “Atomic imperfections move quantum communication network closer to reality” »

Jun 19, 2017

Self-Replicating 3D Printers Could Build Moon Bases, Fight Global Warming

Posted by in categories: 3D printing, engineering, satellites, sustainability

A 3D printer that could re-create itself from lunar material is in development at a university in Canada.

The technology could one day enable humans to 3D-print lunar bases, as well as conduct in-space manufacturing of satellites and solar shields on the moon that could help fight global warming, according to Alex Ellery, an associate professor in the Department of Mechanical and Aerospace Engineering at Carleton University in Ottawa, who is leading the project.

“I believe that self-replicating machines will be transformative for space exploration because it effectively bypasses launch costs,” Ellery told Space.com. [How Moon Bases and Lunar Colonies Work (Infographic)].

Continue reading “Self-Replicating 3D Printers Could Build Moon Bases, Fight Global Warming” »

Jun 14, 2017

Organ chips get smart and go electric

Posted by in categories: biotech/medical, computing, engineering, health, neuroscience

Organs-on-Chips (Organ Chips) are emerging as powerful tools that allow researchers to study the physiology of human organs and tissues in ways not possible before. By mimicking normal blood flow, the mechanical microenvironment, and how different tissues physically interface with one another in living organs, they offer a more systematic approach to testing drugs than other in vitro methods that ultimately could help to replace animal testing.

As it can take weeks to grow human cells into intact differentiated and functional tissues within Organ Chips, such as those that mimic the lung and intestine, and researchers seek to understand how drugs, toxins or other perturbations alter tissue structure and function, the team at the Wyss Institute for Biologically Inspired Engineering led by Donald Ingber has been searching for ways to non-invasively monitor the health and maturity of cells cultured within these microfluidic devices over extended times.

It has been particularly difficult to measure changes in electrical functions of cells grown within Organ Chips that are normally electrically active, such as neuronal cells in the brain or beating heart cells, both during their differentiation and in response to drugs.

Continue reading “Organ chips get smart and go electric” »

Jun 9, 2017

Dr. Jose Luis Cordeiro – Supporting the development of cryonics and rejuvenation biotechnology

Posted by in categories: biotech/medical, cryonics, economics, education, engineering, life extension, lifeboat, singularity

Interview with Dr. Jose Luis Cordeiro at the International Longevity and Cryopreservation Summit in Madrid.


During the recent International Longevity and Cryopreservation Summit in Madrid, LEAF Board member Elena Milova had the opportunity to speak with Dr. Jose Luis Cordeiro new fellow of the World Academy of Art and Science (WAAS) and long-term proponent of innovation technologies in many fields. Jose shared his vision on how public perception of rejuvenation technologies is changing over time and what are the main outcomes of the groundbreaking show he and his team managed to organize.

Continue reading “Dr. Jose Luis Cordeiro – Supporting the development of cryonics and rejuvenation biotechnology” »

Jun 8, 2017

Artificial General Intelligence (AGI): Future A to Z

Posted by in categories: business, computing, cyborgs, engineering, ethics, existential risks, machine learning, robotics/AI, singularity

What is the ultimate goal of Artificial General Intelligence?

In this video series, the Galactic Public Archives takes bite-sized looks at a variety of terms, technologies, and ideas that are likely to be prominent in the future. Terms are regularly changing and being redefined with the passing of time. With constant breakthroughs and the development of new technology and other resources, we seek to define what these things are and how they will impact our future.

Continue reading “Artificial General Intelligence (AGI): Future A to Z” »

Jun 7, 2017

Research alliance builds new transistor for 5nm technology

Posted by in categories: computing, engineering, internet, mobile phones, nanotechnology, neuroscience

IBM, its Research Alliance partners Globalfoundries and Samsung, and equipment suppliers have developed an industry-first process to build silicon nanosheet transistors that will enable 5 nanometer (nm) chips. The details of the process will be presented at the 2017 Symposia on VLSI Technology and Circuits conference in Kyoto, Japan. In less than two years since developing a 7nm test node chip with 20 billion transistors, scientists have paved the way for 30 billion switches on a fingernail-sized chip.

The resulting increase in performance will help accelerate cognitive computing, the Internet of Things (IoT), and other data-intensive applications delivered in the cloud. The power savings could also mean that the batteries in smartphones and other mobile products could last two to three times longer than today’s devices, before needing to be charged.

Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor, instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology.

Continue reading “Research alliance builds new transistor for 5nm technology” »

May 29, 2017

Bioelectricity is a new weapon to fight dangerous infection

Posted by in categories: biotech/medical, engineering, neuroscience

By Kim Thurler, Tufts University

(MEDFORD/SOMERVILLE, Mass.) — Changing the natural electrical signaling that exists in cells outside the nervous system can improve resistance to life-threatening bacterial infections, according to new research from Tufts University biologists. The researchers found that administering drugs, including those already used in humans for other purposes, to make the cell interior more negatively charged strengthens tadpoles’ innate immune response to E. coli infection and injury. This reveals a novel aspect of the immune system – regulation by non-neural bioelectricity – and suggests a new approach for clinical applications in human medicine. The study is published online May 26, 2017, in npj Regenerative Medicine, a Nature Research journal.

“All cells, not just nerve cells, naturally generate and receive electrical signals. Being able to regulate such non-neural bioelectricity with the many ion channel and neurotransmitter drugs that are already human-approved gives us an amazing new toolkit to augment the immune system’s ability to resist infections,” said the paper’s corresponding author Michael Levin, Ph.D., Vannevar Bush Professor of Biology and Director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology in the School of Arts and Sciences. Levin is also an Associate Faculty member of the Wyss Institute of Biologically Inspired Engineering at Harvard University.

Continue reading “Bioelectricity is a new weapon to fight dangerous infection” »

May 27, 2017

Now Artificial Intelligence Is Inventing Sounds That Have Never Been Heard Before

Posted by in categories: biotech/medical, engineering, robotics/AI

As well as beating us at board games, driving cars, and spotting cancer, artificial intelligence is now generating brand new sounds that have never been heard before, thanks to some advanced maths combined with samples from real instruments.

Before long, you might hear some of these fresh sounds pumping out of your radio, as the researchers responsible say they’re hoping to give musicians an almost limitless new range of computer-generated instruments to work with.

The new system is called NSynth, and it’s been developed by an engineering team called Google Magenta, a small part of Google’s larger push into artificial intelligence.

Continue reading “Now Artificial Intelligence Is Inventing Sounds That Have Never Been Heard Before” »

May 23, 2017

China’s belt and road infrastructure plan also includes science

Posted by in categories: economics, engineering, nanotechnology, quantum physics, robotics/AI, science, sustainability

China is also planning to use the initiative to flex its scientific and engineering muscles, officials made clear at a 2-day Belt and Road Forum for International Cooperation that ended yesterday in Beijing. “Innovation is an important force powering development,” Xi said in a speech to the opening session of the forum. And so the initiative will include technical cooperation in fields including artificial intelligence, nanotechnology, quantum computing, and smart cities. He also mentioned the need to pursue economic growth that is in line with sustainable development goals, and that rests on environmentally friendly approaches.


Investment also planned in artificial intelligence, nanotechnology, and other fields.

Read more

May 12, 2017

The Buck Institute for Research on Aging

Posted by in categories: biotech/medical, chemistry, engineering, life extension, neuroscience

The Buck institute is in the spotlight today.


Located in Novato, California, not too far from Mount Burdell Preserve and Olompali State Historic Park, is one of the world’s leading research centres for ageing and age-related diseases—the Buck Institute for Research on Aging.

Opened in 1999 thanks to the substantial bequest of American philanthropist Beryl Hamilton Buck, the Buck Institute set to fulfill her wishes that her patrimony be spent to “extend help towards the problems of the aged, not only the indigent but those whose resources cannot begin to provide adequate care.” Over the years, the Institute has certainly honoured its commitment: The Buck can boast some of the most eminent experts on ageing among its research staff, and a number of laboratories that push forward our understanding of age-related pathologies every day—such as the Campisi Lab and the Kennedy Lab, just to name a few.

The Buck’s approach to investigating ageing is a multifaceted one. The institute rightfully acknowledges the necessity to bring together experts from disparate fields of science—from physics to engineering, from mathematics to anthropology—in order to properly understand the complex networks of biochemical processes underlying ageing and ultimately leading to pathology. Biochemistry, molecular endocrinology, proteomics, genomic stability, and cell biology are only some of the areas of investigation of the Buck, and the medical conditions researched by their teams range from Huntington’s disease to ischemia, to Parkinson’s, to cancer and Alzheimer’s. The three main questions the Buck set to answer are why do ageing tissues lose their regeneration capacity, why do stem cells fail to function with ageing, and how do tissues change during ageing so that they no longer support normal regenerative processes.

Continue reading “The Buck Institute for Research on Aging” »

Page 1 of 6612345678Last