Toggle light / dark theme

Muons are elementary particles that resemble electrons, but they are heavier and decay very rapidly (i.e., in just a few microseconds). Studying muons can help to test and refine the standard of particle physics, while also potentially unveiling new phenomena or effects.

So far, the generation of muons in experimental settings has been primarily achieved using proton accelerators, which are large and expensive instruments. Muons can also originate from , rays of high-energy particles originating from outer space that can collide with atoms in the Earth’s atmosphere, producing muons and other secondary particles.

Researchers at the China Academy of Engineering Physics (CAEP), Guangdong Laboratory, the Chinese Academy of Sciences (CAS) and other institutes recently introduced a new method to produce muons in experimental settings, using an ultra-short high-intensity laser.

A new device that monitors the waste-removal system of the brain may help to prevent Alzheimer’s and other neurological diseases, according to a study published today in Nature Biomedical Engineering.

In the study, participants were asleep when they wore the device: a head cap embedded with electrodes that measures shifts in fluid within , the from sleep to wakefulness and changes in the brain’s blood vessels.

By measuring these three features, the researchers found they could monitor the brain’s glymphatic system, which acts as a waste-removal and nutrient-delivery system.

A research team has discovered ferroelectric phenomena occurring at a subatomic scale in the natural mineral brownmillerite.

The team was led by Prof. Si-Young Choi from the Department of Materials Science and Engineering and the Department of Semiconductor Engineering at POSTECH (Pohang University of Science and Technology), in collaboration with Prof. Jae-Kwang Lee’s team from Pusan National University, as well as Prof. Woo-Seok Choi’s team from Sungkyunkwan University. The work appears in Nature Materials.

Electronic devices store data in memory units called domains, whose minimum size limits the density of stored information. However, ferroelectric-based memory has been facing challenges in minimizing domain size due to the collective nature of atomic vibrations.

A research team affiliated with UNIST has unveiled a novel extracorporeal blood purification technology that captures and removes bacteria from the bloodstream by leveraging sticky, clot-like surfaces. This breakthrough could pave the way for new treatments against deadly systemic infections, including sepsis, even those caused by antibiotic-resistant bacteria. The work is published in Advanced Science.

Led by Professor Joo H. Kang, from the Department of Biomedical Engineering at UNIST, the research team announced the development of an innovative extracorporeal bacterial purification device that utilizes artificial blood clots. Similar to dialysis, the technique involves extracting infected blood outside the body, adsorbing bacteria onto artificial thrombi, and then returning the purified blood to the patient.

The newly developed extracorporeal blood purification device (eCDTF) features a spiral structure inserted into the central tube. Inside this spiral, artificial blood clots are embedded, which attract and trap bacteria flowing through the tube. Composed solely of without any cellular components like , these artificial thrombi facilitate effective bacterial adhesion to the device’s surface.

Putting hypersensitive quantum sensors in a living cell is a promising path for tracking cell growth and diagnosing diseases—even cancers—in their early stages.

Many of the best, most powerful quantum sensors can be created in small bits of diamond, but that leads to a separate issue: It’s hard to stick a diamond in a cell and get it to work.

“All kinds of those processes that you really need to probe on a , you cannot use something very big. You have to go inside the cell. For that, we need nanoparticles,” said University of Chicago Pritzker School of Molecular Engineering Ph.D. candidate Uri Zvi. “People have used diamond nanocrystals as biosensors before, but they discovered that they perform worse than what we would expect. Significantly worse.”

As ocean levels rise, coastal communities face an ever-increasing risk of severe flooding. The existing infrastructure protecting many of these communities was not built to withstand the combined threat of rising seas and severe storms seen in this century.

While reinforcing existing flood barriers poses a costly challenge for at-risk communities, it also provides the opportunity to introduce innovative solutions that can provide both flood prevention and environmental benefits.

A group of researchers at UC Santa Cruz and the U.S. Geological Survey has evaluated one such flood mitigation solution, which can reinforce while creating environmentally beneficial coastal habitats. In a study published on May 9 in Scientific Reports, the team evaluated the effectiveness of “horizontal levees”—traditional levees retrofitted with a sloping, wetland border—as a means of strengthening shorelines against the threat of rising sea levels.

Separating crude oil into products such as gasoline, diesel, and heating oil is an energy-intensive process that accounts for about 6% of the world’s CO2 emissions. Most of that energy goes into the heat needed to separate the components by their boiling point.

In an advance that could dramatically reduce the amount of energy needed for fractionation, MIT engineers have developed a that filters the components of crude oil by their molecular size.

“This is a whole new way of envisioning a separation process. Instead of boiling mixtures to purify them, why not separate components based on shape and size? The key innovation is that the filters we developed can separate very at an atomistic length scale,” says Zachary P. Smith, an associate professor of chemical engineering at MIT and the senior author of the new study.

More than ten years ago, researchers at Rice University led by materials scientist Boris Yakobson predicted that boron atoms would cling too tightly to copper to form borophene, a flexible, metallic two-dimensional material with potential across electronics, energy and catalysis. Now, new research shows that prediction holds up, but not in the way anyone expected.

Unlike systems such as graphene on , where atoms may diffuse into the substrate without forming a distinct alloy, the in this case formed a defined 2D copper boride ⎯ a new compound with a distinct atomic structure. The finding, published in Science Advances by researchers from Rice and Northwestern University, sets the stage for further exploration of a relatively untapped class of 2D materials.

“Borophene is still a material at the brink of existence, and that makes any new fact about it important by pushing the envelope of our knowledge in materials, physics and electronics,” said Yakobson, Rice’s Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering and chemistry. “Our very first theoretical analysis warned that on copper, boron would bond too strongly. Now, more than a decade later, it turns out we were right ⎯ and the result is not , but something else entirely.”

Improving energy conversion efficiency in power electronics is vital for a sustainable society, with wide-bandgap semiconductors like GaN and SiC power devices offering advantages due to their high-frequency capabilities. However, energy losses in passive components at high frequencies hinder efficiency and miniaturization. This underscores the need for advanced soft magnetic materials with lower energy losses.

In a study published in Communications Materials, a research team led by Professor Mutsuko Hatano from the School of Engineering, Institute of Science, Tokyo, Japan, has developed a novel method for analyzing such losses by simultaneously imaging the amplitude and phase of alternating current (AC) stray fields, which are key to understanding hysteresis losses.

Using a diamond quantum sensor with nitrogen-vacancy (NV) centers and developing two protocols—qubit frequency tracking (Qurack) for kHz and quantum heterodyne (Qdyne) imaging for MHz frequencies—they realized wide-range AC magnetic field imaging. This study was carried out in collaboration with Harvard University and Hitachi, Ltd.

When exposed to periodic driving, which is the time-dependent manipulation of a system’s parameters, quantum systems can exhibit interesting new phases of matter that are not present in time-independent (i.e., static) conditions. Among other things, periodic driving can be useful for the engineering of synthetic gauge fields, artificial constructs that mimic the behavior of electromagnetic fields and can be leveraged to study topological many-body physics using neutral atom quantum simulators.

Researchers at Ludwig-Maximilians-Universität, Max Planck Institute for Quantum Optics and Munich Center for Quantum Science and Technology (MCQST) recently realized a strongly interacting phase of matter in large-scale bosonic flux ladders, known as the Mott-Meissner phase, using a neutral atom quantum simulator. Their paper, published in Nature Physics, could open new exciting possibilities for the in-depth study of topological quantum matter.

“Our work was inspired by a long-standing effort across the field of neutral atom quantum simulation to study strongly interacting phases of matter in the presence of magnetic fields,” Alexander Impertro, first author of the paper, told Phys.org. “The interplay of these two ingredients can create a variety of quantum many-body phases with exotic properties.