Toggle light / dark theme

Curved nanosheets in anode help prevent battery capacity loss during fast charging

As electric vehicles (EVs) and smartphones increasingly demand rapid charging, concerns over shortened battery lifespan have grown. Addressing this challenge, a team of Korean researchers has developed a novel anode material that maintains high performance even with frequent fast charging.

A collaborative effort by Professor Seok Ju Kang in the School of Energy and Chemical Engineering at UNIST, Professor Sang Kyu Kwak of Korea University, and Dr. Seokhoon Ahn of the Korea Institute of Science and Technology (KIST) has resulted in a hybrid anode composed of graphite and organic nanomaterials. This innovative material effectively prevents capacity loss during repeated fast-charging cycles, promising longer-lasting batteries for various applications. The findings are published in Advanced Functional Materials.

During battery charging, lithium ions (Li-ions) move into the , storing energy as Li atoms. Under rapid charging conditions, excess Li can form so-called “dead lithium” deposits on the surface, which cannot be reused. This buildup reduces capacity and accelerates battery degradation.

Researchers pioneer fluid-based laser scanning for brain imaging

When Darwin Quiroz first started working with optics as an undergraduate, he was developing atomic magnetometers. That experience sparked a growing curiosity about how light interacts with matter, an interest that has now led him to a new technique in optical imaging.

Quiroz, a Ph.D. student in the Department of Electrical, Computer and Energy Engineering at the University of Colorado Boulder, is co-first author of a new study that demonstrates how a fluid-based known as an electrowetting prism can be used to steer lasers at high speeds for advanced imaging applications.

The work, published in Optics Express, conducted along with mechanical engineering Ph.D. graduate Eduardo Miscles and Mo Zohrabi, senior research associate, opens the door to new technologies in microscopy, LiDAR, optical communications and even brain imaging.

3D-printed metamaterials harness complex geometry to dampen mechanical vibrations

In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.

But we may be at an inflection point along that path when it comes to engineered structures whose are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory (AFRL) has shown how to 3D print intricate tubes that can use their to stymie vibrations.

Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.

Artificial muscle can switch from soft to rigid to support 4,000 times its own weight

A research team affiliated with UNIST has unveiled a new type of artificial muscle that can seamlessly transition from soft and flexible to rigid and strong—much like rubber transforming into steel. When contracting, this innovative muscle can lift many times its own weight, delivering energy output far surpassing that of human muscles.

Led by Professor Hoon Eui Jeong in the Department of Mechanical Engineering at UNIST, the research team has successfully created a soft artificial muscle capable of dynamically adjusting its stiffness.

The study is published online in Advanced Functional Materials.

Freely levitating rotor spins out ultraprecise sensors for classical and quantum physics

With a clever design, researchers have solved eddy-current damping in macroscopic levitating systems, paving the way for a wide range of sensing technologies.

Levitation has long been pursued by stage magicians and physicists alike. For audiences, the sight of objects floating midair is wondrous. For scientists, it’s a powerful way of isolating objects from external disturbances.

This is particularly useful in the case of rotors, as their torque and , used to measure gravity, gas pressure, momentum, among other phenomena in both classical and , can be strongly influenced by friction. Freely suspending the rotor could drastically reduce these disturbances, and now, researchers from the Okinawa Institute of Science and Technology (OIST) have designed, created, and analyzed such a macroscopic device, bringing the magic of near-frictionless levitation down to Earth through precision engineering.

Multimode quantum entanglement achieved via dissipation engineering

A research team led by Prof. Lin Yiheng from the University of Science and Technology of China (USTC), collaborating with Prof. Yuan Haidong from the Chinese University of Hong Kong, succeeded in generating multipartite quantum entangled states across two, three, and five modes using controlled dissipation as a resource. Their study is published in Science Advances.

Multimode entanglement is a key resource in quantum computation, communication, simulation, and sensing. One of the major challenges in achieving stable and scalable multimode entanglement lies in the inherent susceptibility of quantum systems to environmental noise—a phenomenon known as . To mitigate dissipative effects, conventional preparation methods often require isolating the system from its surroundings.

Recent theoretical and experimental works have revealed an innovative perspective: when properly engineered, dissipation can be transformed into a resource for generating specific quantum states—known as dissipation engineering. However, previous related experiments were confined to single-mode and two-mode quantum systems, and significant challenges remain in the experimental realization of entangled states across multimode bosonic systems.

Molecular motors drive new non-invasive cancer therapies

Imagine tiny machines, smaller than a virus, spinning inside cancer cells and rewiring their behavior from within. No surgery, no harsh chemicals, just precision at the molecular level.

Two researchers from the Artie McFerrin Department of Chemical Engineering at Texas A&M University are investigating light-activated molecular motors—nanometer-sized machines that can apply from within cells to target and selectively disrupt cancerous activity.

Chemical engineering professor Dr. Jorge Seminario and postdoctoral associate Dr. Diego Galvez-Aranda have contributed to pioneering research by demonstrating a new frontier in non-invasive cancer therapies. The recently published manuscript in the Journal of the American Chemical Society continues this line of investigation.

Scientists create a paper-thin light that glows like the sun

Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the researchers achieved light quality remarkably close to natural sunlight, improving color accuracy and reducing eye strain.

Engineered stem cells yield millions of tumor-fighting natural killer cells at reduced cost

Chinese researchers have developed a novel method to efficiently engineer natural killer (NK) cells for cancer immunotherapy. NK cells are central to early antiviral and anticancer defense—among other immune system roles—making them well-suited for cancer immunotherapy. For example, chimeric antigen receptor (CAR)-NK therapy involves adding a lab-built receptor (a CAR) to an NK cell, enabling it to recognize a specific antigen on a cancer cell and attack it.

However, conventional CAR-NK immunotherapies rely primarily on mature NK cells isolated from , such as peripheral blood or cord blood, which poses multiple challenges, including high heterogeneity, low engineering efficiency, high handling costs, and time-intensive processing.

Now a research team led by Prof. Wang Jinyong from the Institute of Zoology of the Chinese Academy of Sciences has developed a novel method to generate induced (that is, lab-generated) NK (iNK) cells and CAR-engineered iNK (CAR-iNK) cells from CD34+ and (HSPCs) derived from cord blood.

/* */