Toggle light / dark theme

How materials science could revolutionise technology — with Jess Wade

Jess Wade explains the concept of chirality, and how it might revolutionise technological innovation.

Join this channel to get access to perks:
https://www.youtube.com/channel/UCYeF244yNGuFefuFKqxIAXw/join.
Watch the Q&A here (exclusively for our Science Supporters): https://youtu.be/VlkHT-0zx9U

This lecture was recorded at the Ri on 14 June 2025.

Imagine if we could keep our mobile phones on full brightness all day, without worrying about draining our battery? Or if we could create a fuel cell that used sunlight to convert water into hydrogen and oxygen? Or if we could build a low-power sensor that could map out brain function?

Whether it’s optoelectronics, spintronics or quantum, the technologies of tomorrow are underpinned by advances in materials science and engineering. For example, chirality, a symmetry property of mirror-image systems that cannot be superimposed, can be used to control the spin of electrons and photons. Join functional materials scientist Jess Wade as she explores how advances in chemistry, physics and materials offer new opportunities in technological innovation.

New device converts plastic waste into fuel using catalyst-free pyrolysis

As tons of plastic waste continue to build up in landfills every day, Yale researchers have developed a way to convert this waste into fuels and other valuable products efficiently and cheaply. The results are published in Nature Chemical Engineering.

Specifically, the researchers are using a method known as pyrolysis, a process of using heat in the absence of oxygen to molecularly break materials down. In this case, it’s used to break plastics down to the components that produce fuels and other products. The study was led by Yale Engineering professors Liangbing Hu and Shu Hu, both members of the Center for Materials Innovation and Yale Energy Sciences Institute.

Conventional methods of pyrolysis often use a to speed up the and achieve a high yield, but it’s a method that comes with significant limitations.

New quantum visualisation techniques could accelerate the arrival of

Scientists have been studying a fascinating material called uranium ditelluride (UTe₂), which becomes a superconductor at low temperatures.

Superconductors can carry electricity without any resistance, and UTe₂ is special because it might belong to a rare type called spin-triplet superconductors. These materials are not only resistant to magnetic fields but could also host exotic quantum states useful for future technologies.

However, one big mystery remained: what is the symmetry of UTe₂’s superconducting state? This symmetry determines how electrons pair up and move through the material. To solve this puzzle, researchers used a highly sensitive tool called a scanning tunneling microscope (STM) with a superconducting tip. They found unique signals—zero-energy surface states—that helped them compare different theoretical possibilities.

Their results suggest that UTe₂ is a nonchiral superconductor, meaning its electron pairs don’t have a preferred handedness (like left-or right-handedness). Instead, the data points to one of three possible symmetries (B₁ᵤ, B₂ᵤ, or B₃ᵤ), with B₃ᵤ being the most likely if electrons scatter in a particular way along one axis.

This discovery brings scientists closer to understanding UTe₂’s unusual superconducting behavior, which could one day help in designing more robust quantum materials.

UTe₂ currently operates at very low temperatures (~1.6 K), so raising its critical temperature is a major goal.

Scaling up production and integrating it into devices will require further material engineering.

Stainless-steel component boosts bacteria-based biobattery

Engineering innovations generally require long hours in the lab, with a lot of trial and error through experimentation before zeroing in on the best solution.

But sometimes, if you’re lucky, the answer can be right under your nose—or in this case, beneath your feet.

Binghamton University Professor Seokheun “Sean” Choi has developed a series of bacteria-fueled biobatteries over the past decade, building on what he has learned to improve the next iteration. The biggest limitation isn’t his imagination—he’s always juggling several projects at once—but the materials he has to work with.

Researchers create safer nonstick surface, cutting use of ‘forever chemicals’

A new material developed by researchers from University of Toronto Engineering could offer a safer alternative to the nonstick chemicals commonly used in cookware and other applications.

The new substance repels both water and grease about as well as standard nonstick coatings—but it contains much lower amounts of per-and polyfluoroalkyl substances (PFAS), a family of chemicals that have raised environmental and health concerns.

“The research community has been trying to develop safer alternatives to PFAS for a long time,” says Professor Kevin Golovin, who heads the Durable Repellent Engineered Advanced Materials (DREAM) Laboratory at U of T Engineering.

Electron beam method enables precise nanoscale carving and building of copper structures

Creating complex structures at the tiniest scales has long been a challenge for engineers. But new research from Georgia Tech shows how electron beams, already widely used in imaging and fabrication, can also be used as ultra-precise tools to both carve and build structures out of materials like copper.

The research group of Professor Andrei Fedorov at the George W. Woodruff School of Mechanical Engineering has discovered a technique that uses focused electron beams in a liquid environment to either remove or deposit copper, depending entirely on the surrounding chemistry.

By tuning the amount of in the solution, the researchers were able to control whether the beam etched away the material or deposited it, effectively allowing 3D sculpting at the atomic level.

Researchers demonstrate first bidirectional asymmetric frequency conversion in a single system

A research team in Korea has experimentally demonstrated, for the first time in the world, a nonlinear wave phenomenon that changes its frequency—either rising or falling—depending on which direction the waves come from.

Much like Janus, the Roman god with two faces looking in , the system exhibits different responses depending on the direction of the incoming wave. This groundbreaking work opens new horizons for technologies ranging from medical ultrasound imaging to advanced noise control.

The joint research team, led by Professor Junsuk Rho of POSTECH’s Departments of Mechanical Engineering, Chemical Engineering, Electrical Engineering, and the Graduate School of Convergence Science and Technology, along with Dr. Yeongtae Jang, Ph.D. candidate Beomseok Oh, and Professor Eunho Kim of Jeonbuk National University, has experimentally demonstrated a phenomenon of bidirectional asymmetric frequency conversion within a granular phononic crystal system.

Research reveals quantum topological potential in material

New research into topological phases of matter may spur advances in innovative quantum devices. As described in a new paper published in the journal Nature Communications, a research team including Los Alamos National Laboratory scientists used a novel strain engineering approach to convert the material hafnium pentatelluride (HfTe5) to a strong topological insulator phase, increasing its bulk electrical resistance while lowering it at the surface, a key to unlocking its quantum potential.

“I’m excited that our team was able to show that the elusive and much-sought-after topological surface states can be made to become a predominant electrical conduction pathway,” said Michael Pettes, scientist with the Center for Integrated Nanotechnologies (CINT) at the Laboratory.

“This is promising for the development of types of quantum optoelectronic devices, dark matter detectors and topologically protected devices such as quantum computers. And the methodology we demonstrate is compatible for experimentation on other .”

Design strategies for reshaping stability and sustainability of perovskite solar cells

A research team from the School of Engineering (SENG) at the Hong Kong University of Science and Technology (HKUST) has introduced comprehensive bio-inspired multiscale design strategies to address key challenges in the commercialization of perovskite solar cells: long-term operational stability. Drawing inspiration from natural systems, these strategies aim to enhance the efficiency, resilience, and adaptability of solar technologies.

Their paper, titled “Bio-Inspired Multiscale Design for Perovskite Solar Cells,” has been published in Nature Reviews Clean Technology.

The approaches focus on leveraging insights from to create that can better withstand environmental stressors and prolonged use.

/* */