Toggle light / dark theme

Researchers at the National Graphene Institute at the University of Manchester have achieved a significant milestone in the field of quantum electronics with their latest study on spin injection in graphene. The paper, published recently in Communications Materials, outlines advancements in spintronics and quantum transport.

Spin electronics, or spintronics, represents a revolutionary alternative to traditional electronics by utilizing the spin of electrons rather than their charge to transfer and store information. This method promises energy-efficient and high-speed solutions that exceed the limitations of classical computation, for next generation classical and quantum computation.

The Manchester team, led by Dr. Ivan Vera-Marun, has fully encapsulated in , an insulating and atomically flat 2D material, to protect its high quality. By engineering the 2D material stack to expose only the edges of , and laying magnetic nanowire electrodes over the stack, they successfully form one-dimensional (1D) contacts.

A new study from the University of Eastern Finland (UEF) explores the behavior of photons, the elementary particles of light, as they encounter boundaries where material properties change rapidly over time. This research uncovers remarkable quantum optical phenomena that may enhance quantum technology and paves the road for an exciting nascent field: four-dimensional quantum optics.

Four-dimensional optics is a research area investigating light scattering from structures which change in time and space. It holds immense promise for advancing microwave and optical technologies by enabling functionalities such as frequency conversion, amplification, polarization engineering and asymmetric scattering. That is why it has captured the interest of many researchers across the globe.

Previous years have seen significant strides in this area. For instance, a 2024 study published in Nature Photonics and also involving UEF highlights how incorporating optical features like resonances can drastically influence the interaction of electromagnetic fields with time-varying two-dimensional structures, opening exotic possibilities to control light.

A team of scientists from Princeton University has measured the energies of electrons in a new class of quantum materials and has found them to follow a fractal pattern. Fractals are self-repeating patterns that occur on different length scales and can be seen in nature in a variety of settings, including snowflakes, ferns, and coastlines.

A quantum version of a , known as “Hofstadter’s butterfly,” has long been predicted, but the new study marks the first time it has been directly observed experimentally in a real material. This research paves the way toward understanding how interactions among electrons, which were left out of the theory originally proposed in 1976, give rise to new features in these quantum fractals.

The study was made possible by a recent breakthrough in , which involved stacking and twisting two sheets of carbon atoms to create a pattern of electrons that resembles a common French textile known as a moiré design.

Quantum light sources are fickle. They can flicker like stars in the night sky and can fade out like a dying flashlight. However, newly published research from the University of Oklahoma proves that adding a covering to one of these light sources, called a colloidal quantum dot, can cause them to shine without faltering, opening the door to new, affordable quantum possibilities. The findings are available in Nature Communications.

Quantum dots, or QDs, are so small that if you scaled up a single quantum dot to the size of a baseball, a baseball would be the size of the moon. QDs are used in a variety of products, from computer monitors and LEDs to and biomedical engineering devices. They are also used in and communication.

A research study led by OU Assistant Professor Yitong Dong demonstrates that adding a crystalized molecular layer to QDs made of perovskite neutralizes surface defects and stabilizes the surface lattices. Doing so prevents them from darkening or blinking.

Apical periodontitis, a chronic and hard-to-treat dental infection, affects more than half of the population worldwide and is the leading cause of tooth loss. Root canal is the standard treatment, but existing approaches to treat the infection have many limitations that can cause complications, leading to treatment failure.

Now, researchers at the School of Dental Medicine, Perelman School of Medicine, and School of Engineering and Applied Sciences have identified a promising new therapeutic option that could potentially disrupt current treatments. The team of researchers is part of the Center for Innovation & Precision Dentistry, a joint research center between Penn Dental Medicine and Penn Engineering that leverages engineering and computational approaches to advance oral and craniofacial health care innovation.

In a paper published in the Journal of Clinical Investigation, they show that ferumoxytol, an FDA-approved iron oxide nanoparticle formulation, greatly reduces infection in patients diagnosed with apical periodontitis.

SpaceX’s Starship is poised for its eighth flight from Boca Chica, Texas, pending regulatory approval from the FAA. The previous flight resulted in a mid-air explosion, leading to increased scrutiny and a temporary suspension by the FAA. The upcoming launch will feature a daring maneuver to catch the booster stage with “chopstick” arms, showcasing advanced engineering feats. The mission aims to deploy Starlink simulators, marking progress toward new satellite technology. Elon Musk and SpaceX view Starship as crucial for future missions to Mars and the Moon, with NASA keenly following its progress.

Riverworld.


Imagine a world stretched along a single, endless river inside a colossal space megastructure. Explore the fascinating concept of the Topopolis, a futuristic habitat billions of miles long, where humanity might thrive in a sprawling civilization bound by physics, engineering, and imagination.

Watch my exclusive video Big Alien Theory https://nebula.tv/videos/isaacarthur–… Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa… Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30. Visit our Website: http://www.isaacarthur.net Join Nebula: https://go.nebula.tv/isaacarthur Support us on Patreon: / isaacarthur Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Facebook Group: / 1,583,992,725,237,264 Reddit: / isaacarthur Twitter: / isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server: / discord Credits: Topopolis: The Eternal River Episode 487a; February 23, 2025 Written, Produced & Narrated by: Isaac Arthur Graphics: Apogii.uk, Ken York YD Visual, Steve Bowers, Udo Scroeter Select imagery/video supplied by Getty Images Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.

This approach is not only faster and more energy-efficient but also delivers precise control over the material’s optical properties.

Light-Powered Quantum Dot Tuning

Researchers at north carolina state university.

Founded in 1887 and part of the University of North Carolina system, North Carolina State University (also referred to as NCSU, NC State, or just State) is a public land-grant research university in Raleigh, North Carolina. NC State offers a wide range of academic programs and disciplines, including the humanities, social sciences, natural sciences, engineering, business, and education. It is known for its strong programs in engineering, science, and technology and is a leader in research and innovation. It forms one of the corners of the Research Triangle together with Duke University in Durham and The University of North Carolina at Chapel Hill.

Traditional 3D printing builds objects layer by layer, but tomographic volumetric additive manufacturing (TVAM) takes a different approach. It uses laser light to illuminate a rotating vial of resin, solidifying material only where the accumulated energy surpasses a specific threshold. A key advantage of TVAM is its speed—it can produce objects in seconds, whereas conventional layer-based 3D printing takes about 10 minutes. However, its efficiency is a major drawback, as only about 1% of the projected light contributes to forming the intended shape.

Researchers from EPFL’s Laboratory of Applied Photonic Devices, led by Professor Christophe Moser, and the SDU Centre for Photonics Engineering, led by Professor Jesper Glückstad, have developed a more efficient TVAM technique, as reported in Nature Communications

<em> Nature Communications </em> is an open-access, peer-reviewed journal that publishes high-quality research from all areas of the natural sciences, including physics, chemistry, Earth sciences, and biology. The journal is part of the Nature Publishing Group and was launched in 2010. “Nature Communications” aims to facilitate the rapid dissemination of important research findings and to foster multidisciplinary collaboration and communication among scientists.

UK-based Core Power has announced that it plans to mass produce a fleet of floating nuclear power plants (FNPPs) using advanced reactor design and modular shipbuilding to be anchored off the US coast in about 10 years.

Nuclear power is enjoying something of a renaissance with many countries turning to the atom to meet their energy needs. However, the bottleneck for increasing the nuclear sector isn’t with manufacturing reactors. It’s the civil engineering side of things, with most of the time and cost going to securing real estate for building the foundations and buildings for the plant as well as navigating a bewildering maze of permits, licenses, and planning permissions.

To get around this as well as speed up production, Core Power plans to use Generation 4 reactor design combined with conventional modular shipbuilding methods to crank out floating nuclear plants on an assembly line basis. To reflect this, the company is referring to this as the “Liberty program” in a call back to the famous Liberty ships of the Second World War that were built at a speed of as fast as four days for one hull.