
For the first time, researchers have used high-speed laser writing to create lines spaced just 100 nm apart on a glass substrate. The optimized printing approach could enable super-resolution 3D direct laser writing (DLW) of microlenses, photonics crystals, micro-optical devices, metamaterials and more.
DLW is an additive manufacturing technique that uses a focused laser beam to selectively solidify, or polymerize, a material with nanoscale precision. DLW typically uses multi-photon polymerization to polymerize materials in a precise, 3D manner.
“Increasing the resolution —the minimum distance between two adjacent features—is difficult because the intense laser light can cause unwanted exposure in nearby areas during DLW,” said Qiulan Liu, a member of the research team from Zhejiang Lab and Zhejiang University in China. “However, by using a unique dual-beam optical setup and a special photoresist, we were able to overcome this challenge and achieve super-resolution DLW.”