Toggle light / dark theme

The Black Basta ransomware operation created an automated brute-forcing framework dubbed ‘BRUTED’ to breach edge networking devices like firewalls and VPNs.

The framework has enabled BlackBasta to streamline initial network access and scale ransomware attacks on vulnerable internet-exposed endpoints.

The discovery of BRUTED comes from EclecticIQ researcher Arda Büyükkaya following an in-depth examination of the ransomware gang’s leaked internal chat logs.

Chinese internet search giant Baidu released a new artificial intelligence reasoning model Sunday and made its AI chatbot services free to consumers as ferocious competition grips the sector.

Technology companies in China have been scrambling to release improved AI platforms since start-up DeepSeek shocked its rivals with its and highly cost-efficient model in January.

In a post on WeChat, Baidu announced the launch of its latest X1 reasoning model—which the company claims performs similarly to DeepSeek’s but for lower cost—and a new foundation model, Ernie 4.5.

Artificial Intelligence (AI) is, without a doubt, the defining technological breakthrough of our time. It represents not only a quantum leap in our ability to solve complex problems but also a mirror reflecting our ambitions, fears, and ethical dilemmas. As we witness its exponential growth, we cannot ignore the profound impact it is having on society. But are we heading toward a bright future or a dangerous precipice?

This opinion piece aims to foster critical reflection on AI’s role in the modern world and what it means for our collective future.

AI is no longer the stuff of science fiction. It is embedded in nearly every aspect of our lives, from the virtual assistants on our smartphones to the algorithms that recommend what to watch on Netflix or determine our eligibility for a bank loan. In medicine, AI is revolutionizing diagnostics and treatments, enabling the early detection of cancer and the personalization of therapies based on a patient’s genome. In education, adaptive learning platforms are democratizing access to knowledge by tailoring instruction to each student’s pace.

These advancements are undeniably impressive. AI promises a more efficient, safer, and fairer world. But is this promise being fulfilled? Or are we inadvertently creating new forms of inequality, where the benefits of technology are concentrated among a privileged few while others are left behind?

One of AI’s most pressing challenges is its impact on employment. Automation is eliminating jobs across various sectors, including manufacturing, services, and even traditionally “safe” fields such as law and accounting. Meanwhile, workforce reskilling is not keeping pace with technological disruption. The result? A growing divide between those equipped with the skills to thrive in the AI-driven era and those displaced by machines.

Another urgent concern is privacy. AI relies on vast amounts of data, and the massive collection of personal information raises serious questions about who controls these data and how they are used. We live in an era where our habits, preferences, and even emotions are continuously monitored and analyzed. This not only threatens our privacy but also opens the door to subtle forms of manipulation and social control.

Then, there is the issue of algorithmic bias. AI is only as good as the data it is trained on. If these data reflect existing biases, AI can perpetuate and even amplify societal injustices. We have already seen examples of this, such as facial recognition systems that fail to accurately identify individuals from minority groups or hiring algorithms that inadvertently discriminate based on gender. Far from being neutral, AI can become a tool of oppression if not carefully regulated.

Who Decides What Is Right?

AI forces us to confront profound ethical questions. When a self-driving car must choose between hitting a pedestrian or colliding with another vehicle, who decides the “right” choice? When AI is used to determine parole eligibility or distribute social benefits, how do we ensure these decisions are fair and transparent?

The reality is that AI is not just a technical tool—it is also a moral one. The choices we make today about how we develop and deploy AI will shape the future of humanity. But who is making these decisions? Currently, AI’s development is largely in the hands of big tech companies and governments, often without sufficient oversight from civil society. This is concerning because AI has the potential to impact all of us, regardless of our individual consent.

A Utopia or a Dystopia?

The future of AI remains uncertain. On one hand, we have the potential to create a technological utopia, where AI frees us from mundane tasks, enhances productivity, and allows us to focus on what truly matters: creativity, human connection, and collective well-being. On the other hand, there is the risk of a dystopia where AI is used to control, manipulate, and oppress—dividing society between those who control technology and those who are controlled by it.

The key to avoiding this dark scenario lies in regulation and education. We need robust laws that protect privacy, ensure transparency, and prevent AI’s misuse. But we also need to educate the public on the risks and opportunities of AI so they can make informed decisions and demand accountability from those in power.

Artificial Intelligence is, indeed, the Holy Grail of Technology. But unlike the medieval legend, this Grail is not hidden in a distant castle—it is in our hands, here and now. It is up to us to decide how we use it. Will AI be a tool for building a more just and equitable future, or will it become a weapon that exacerbates inequalities and threatens our freedom?

The answer depends on all of us. As citizens, we must demand transparency and accountability from those developing and implementing AI. As a society, we must ensure that the benefits of this technology are shared by all, not just a technocratic elite. And above all, we must remember that technology is not an end in itself but a means to achieve human progress.

The future of AI is the future we choose to build. And at this critical moment in history, we cannot afford to get it wrong. The Holy Grail is within our reach—but its true value will only be realized if we use it for the common good.

__
Copyright © 2025, Henrique Jorge

[ This article was originally published in Portuguese in SAPO’s technology section at: https://tek.sapo.pt/opiniao/artigos/o-santo-graal-da-tecnologia ]

Quantum Internet Alliance (QIA) researchers at TU Delft, QuTech, University of Innsbruck, INRIA and CNRS recently announced the creation of the first operating system designed for quantum networks: QNodeOS. The research, published in Nature, marks a major step forward in transforming quantum networking from a theoretical concept to a practical technology that could revolutionize the future of the internet.

“The goal of our research is to bring quantum network technology to all. With QNodeOS we’re taking a big step forward. We’re making it possible—for the first time—to program and execute applications on a quantum network easily,” says Prof. Dr. Stephanie Wehner, Professor of Quantum Computer Science at TU Delft’s quantum technology research institute QuTech, who led the study. “Our work also creates a framework opening entirely new areas of quantum computer science research.”

Abstract

Agriculture is a sector that plays a crucial role in ensuring food security and sustainable development. However, traditional agriculture practices face challenges such as inefficient irrigation methods and lack of real-time monitoring, leading to water waste and reduced crop yield. Several systems that attempt to address these challenges exist, such as those based on Wi-Fi, Bluetooth, and 3G/4G cellular technology; but also encounter difficulties such as low transmission range, high power consumption, etc. To address all these issues, this paper proposes a smart agriculture monitoring and automatic irrigation system based on LoRa. The system utilizes LoRa technology for long-range wireless communication, Blynk platform for real-time data visualization and control, and ThingSpeak platform for data storage, visualization, and further analysis. The system incorporates multiple components, including a sensor node for data collection, a gateway for data transmission, and an actuator node for irrigation control. Experimental results show that the proposed system effectively monitors collected data such as soil moisture levels, visualizes data in real time, and automatically controls irrigation based on sensor data and user commands. The system proposed in this study provides a cost-effective and efficient solution for sustainable agriculture practices.

Smart Agriculture, Internet of Things, LoRa, Power Consumption, Real-Time Monitoring.

Can Tesla REALLY Build Millions of Optimus Bots? ## Tesla is poised to revolutionize robotics and sustainable energy by leveraging its innovative manufacturing capabilities and vertical integration to produce millions of Optimus bots efficiently and cost-effectively ## Questions to inspire discussion ## Manufacturing and Production.

S low model count strategy benefit their production? A: Tesla s speed of innovation and ability to build millions of robots quickly gives them a key advantage in mass producing and scaling manufacturing for humanoid robots like Optimus. + s factory design strategies support rapid production scaling? A: Tesla## Cost and Efficiency.

S vertical integration impact their cost structure? A: Tesla s AI brain in-house, Tesla can avoid paying high margins to external suppliers like Nvidia for the training portion of the brain. +## Technology and Innovation.

S experience in other industries benefit Optimus development? A: Tesla s own supercomputer, Cortex, and AI training cluster are crucial for developing and training the Optimus bot## Quality and Reliability.

S manufacturing experience contribute to Optimus quality? A: Tesla## Market Strategy.

S focus on vehicle appeal relate to Optimus production? A: Tesla## Scaling and Demand.

How will artificial intelligence affect the distribution of income and wealth this century? After falling through much of the 20th century, income inequality, measured as the fraction of income going to the richest 1% of residents, has been rising since the 1980s. The fraction has doubled in both China and the United States during that time, increased by 50% in Europe and one-third worldwide.

Industrialization dominated the economy before then, but starting in the ’70s and ’80s, capital took over as globalization increased, tax changes reduced progressivity and game-changing technologies were introduced rapidly.

The computer and personal computer revolution came first, followed by the Internet and the World Wide Web. Now (AI) is beginning to make its mark in the world as a next-generation general-purpose technology.