Toggle light / dark theme

Scientists develop the world’s first 6G chip, capable of 100 Gbps speeds

Sixth generation, or 6G, wireless technology is one step closer to reality with news that Chinese researchers have unveiled the world’s first “all-frequency” 6G chip. The chip is capable of delivering mobile internet speeds exceeding 100 gigabits per second (Gbps) and was developed by a team led by scientists from Peking University and the City University of Hong Kong.

6G technology is the successor to 5G and promises to bring about a massive leap in how we communicate. It will offer benefits such as ultra-high-speed connectivity, ultra-low latency and AI integration that can manage and optimize networks in real-time. To achieve this, 6G networks will need to operate across a range of frequencies, from standard microwaves to much higher terahertz waves. Current 5G technology utilizes a limited set of radio frequencies, similar to those used in previous generations of wireless technologies.

The new is no bigger than a thumbnail, measuring 11 millimeters by 1.7 millimeters. It operates across a wide frequency range, from 0.5 GHz to 115 GHz, which traditionally takes nine separate radio systems to cover this spectrum.

Over 16,000 compromised servers uncovered using Secure Shell key probing method

An international research team from the Max Planck Institute (MPI) for Informatics in Saarbrücken, Germany, and the Delft University of Technology in the Netherlands has developed a method to detect compromised hosts at an internet scale by probing servers with public SSH keys previously observed in attacker operations.

This way, the team was able to identify more than 16,000 compromised hosts. Their findings have now been published at the USENIX Security Symposium 2025, where they were awarded a Distinguished Paper Award and the Internet Defense Prize.

Secure Shell (SSH) is one of the most common tools used to manage remotely. It provides a secure, encrypted channel between a client and a server, allowing users to log in, execute commands, and transfer files safely. SSH is widely used by system administrators and developers for maintaining and configuring remote systems.

Starship IFT-10 & Starlink

SpaceX’s successful Starship IFT-10 test and advancements in Starlink technology are poised to significantly reduce launch costs and disrupt the broadband landscape, paving the way for a more efficient and cost-effective space travel and satellite internet service.

## Questions to inspire discussion.

Starship and Starlink Advancements.

🚀 Q: How does Starship improve Starlink satellite deployment? A: Starship enables deployment of V3 Starlink satellites that are 40-50X cheaper per unit bandwidth compared to Falcon 9, according to Mach33 research.

📡 Q: What advantages do larger satellites on Starship offer? A: Starship’s size allows for larger satellites delivering more bandwidth per mass, improving physics scaling laws and making it 50X more efficient than Falcon 9 for launching bandwidth per kilogram.

Cost and Capacity Improvements.

Quantum internet is possible using standard Internet protocol — University engineers send quantum signals over fiber lines without losing entanglement

Engineers at the University of Pennsylvania have successfully sent quantum signals over a standard internet connection with fiber-optic cables in the real world. The researchers have published their work in Science, taking the quantum internet from theory to reality by using existing internet systems.

Quantum signals are famously weak, unable to be measured without losing their quantum entanglement and becoming unreadable with too much noise. But engineers have managed to send the signals over the same busy internet infrastructure that standard IP signals occupy.

Engineers send quantum signals with standard Internet Protocol

In a first-of-its-kind experiment, engineers at the University of Pennsylvania brought quantum networking out of the lab and onto commercial fiber-optic cables using the same Internet Protocol (IP) that powers today’s web.

Reported in Science, the work shows that fragile quantum signals can run on the same infrastructure that carries everyday online traffic. The team tested their approach on Verizon’s campus fiber-optic network.

The Penn team’s tiny “Q-chip” coordinates quantum and classical data and, crucially, speaks the same language as the modern web. That approach could pave the way for a future “quantum internet,” which scientists believe may one day be as transformative as the dawn of the online era.

Quantum memory array brings us closer to a quantum RAM

The internet, social media, and digital technologies have completely transformed the way we establish commercial, personal and professional relationships. At its core, this society relies on the exchange of information that is expressed in terms of bits. This basic unit of information can be either a 0 or a 1, and it is usually represented in electrical circuits, for instance, as two voltage levels (one representing the bit in state 0 and the other representing state 1).

The ability to store and manipulate bits efficiently lays the basis of digital electronics and enables modern devices to perform a variety of tasks, ranging from sending emails and playing music to numerical simulations. These processes are only possible thanks to key hardware components like random-access memory (RAM), which offer temporary storage and on-demand retrieval of data.

In parallel, advances in have led to a new kind of information unit: the . Unlike classical bits, which are strictly 0 or 1, qubits can exist in a superposition of both states at once. This opens up new possibilities for processing and storing information, although its practical implications are still being explored.

UC Davis Study Reveals Alarming Browser Tracking by GenAI Assistants

A new study led by computer scientists at the University of California, Davis, reveals that generative AI browser assistants collect and share sensitive data without users’ knowledge. Stronger safeguards, transparency and awareness are needed to protect user privacy online, the researchers said. A new brand of generative AI, or GenAI, browser extensions act as your personal assistant as you surf the web, making browsing easier and more personalized. They can summarize web pages, answer questions, translate text and take notes.

HUGE: Elon’s “Macrohard” AI — His CRAZIEST Idea Ever

Questions to inspire discussion.

Industry Disruption.

🏢 Q: How might traditional companies be affected by AI simulations? A: Traditional firms like Microsoft could see their valuation drop by 50% if undercut by AI clones, while the tech industry may experience millions of jobs vanishing, potentially leading to recessions or increased inequality.

🤖 Q: What is the potential scale of AI company simulations? A: AI-simulated companies like “Macrohard” could become real entities, operating at a fraction of the cost of traditional companies and disrupting markets 10 times faster and bigger than the internet’s impact on retail.

Regulatory Landscape.

📊 Q: How might governments respond to AI-simulated companies? A: Governments may implement regulations on AI companies to slow innovation, potentially creating monopolies that regulators would later need to break up, further disrupting markets.

Did Elon Musk Just KILL the Model Y L in America?

Questions to inspire discussion.

🤖 Q: What is Tesla’s vision for autonomous vehicles? A: Tesla is prioritizing a robo taxi future with Cybercab and potentially Robovan, likely to focus on producing robo vehicles over traditional cars in the near future.

📊 Q: How does the Model Y L fit into Tesla’s robotaxi plans? A: The Model Y L would be a good fit for the robo taxi network, offering a bigger car with more versatility that people want, even if they don’t need the space, and would be a hot seller in the US market.

Tesla’s Full Self-Driving Progress.

🚀 Q: How close is Tesla to achieving full self-driving? A: With version 14 of FSD almost complete and version 15 likely to be the final needed version within a year, Tesla is expected to fully commit to the robo taxi future.

🏢 Q: How has Tesla’s leadership approached the robotaxi strategy? A: Tesla’s executives previously resisted Elon Musk’s push to bet the company on robo taxis, but are now likely to fully commit given the progress in FSD development.

/* */