Toggle light / dark theme

China’s new 2.47kW portable laser works in Arctic cold, Saharan desert

Chinese scientists have developed a portable 2-kilowatt (kW) fiber laser weapon that can operate in extreme temperatures. Reportedly capable of functioning in conditions between −58°F (−50°C) and 122°F (50°C), the new laser does not require cooling or heating systems. This breakthrough means the laser can be used anywhere on Earth, from the Arctic to the Sahara, without the need for bulky infrastructure.

If true, the innovation is an impressive feat as most lasers of this power class require massive cooling units (like air conditioners in a shipping container) to avoid overheating or freezing. The device has been developed to cater to defense and industrial sectors.

“We have achieved a technological breakthrough in the performance of wide-temperature operating fibre lasers,” Chen Jinbao, vice-president of the National University of Defence Technology which led the development of the laser, explained in the paper published in the Chinese-language journal Higher Power Laser and Particle Beams in July.

https://interestingengineering.com/innovation/china-2-47…ert-arctic Particle Beams in July.


The laser beams enough power to disable drones and cut through several kinds of materials from over 0.62 miles (1 km) away.

Tesla Robotaxi Changes Everything!

Tesla’s Robotaxi has the potential to revolutionize transportation and disrupt various industries, including car ownership, urban planning, and traditional car dealerships, with its autonomous driving technology and low-cost, hassle-free ride experience ## ## Questions to inspire discussion.

Transportation Revolution.

🚕 Q: How will Tesla’s Robotaxi network change urban transportation?

A: Tesla’s Robotaxi will make personal vehicle ownership obsolete in dense cities, offering rides at 25 cents per mile that are both cost-effective and convenient, eliminating the need for parking spaces.

🚗 Q: What makes Tesla’s Cybercab unique?

A: Cybercab is designed to be the most utilitarian vehicle ever built, featuring 50% fewer parts than the Model 3, making it highly scalable for millions of rides with wireless charging and autonomous capabilities.

A dexterous and compliant aerial continuum manipulator for cluttered and constrained environments

Nature Communications paper.
Paper link: https://www.nature.com/articles/s41467-024-55157-2
PDF link: https://rdcu.be/d7B8C

This paper proposes a highly dexterous and compliant aerial continuum manipulator (Aerial Elephant Trunk). We have proposed the design, designed the shape estimation method, developed a feedback controller, and proposed a whole-body motion planning module such that the UAV and the continuum manipulator could carry out tasks as a whole.

AET can perform various challenging aerial manipulation tasks, including but not limited to:
1) grasping object of various sizes and shapes;
2) traversing constrained pipelines with various shapes;
3) aerial writing/painting;
4) performing manipulation in various complex environments.

#robot #drone #uav #airplane #robotics #artificialintelligence #technology #learning #deeplearning @UAVfutures @fpvdrones @meninododronefpv @Thedroneracingleague @RobotFutureAI

Engineers develop blueprint for robot swarms, mimicking bee and ant construction

Bees, ants and termites don’t need blueprints. They may have queens, but none of these species breed architects or construction managers. Each insect worker, or drone, simply responds to cues like warmth or the presence or absence of building material. Unlike human manufacturing, the grand design emerges simply from the collective action of the drones—no central planning required.

Now, researchers at Penn Engineering have developed mathematical rules that allow virtual swarms of tiny robots to do the same. In , the robots built honeycomb-like structures without ever following—or even being able to comprehend—a plan.

“Though what we have done is just a first step, it is a new strategy that could ultimately lead to a new paradigm in manufacturing,” says Jordan Raney, Associate Professor in Mechanical Engineering and Applied Mechanics (MEAM), and the co-senior author of a new paper in Science Advances. “Even 3D printers work step by step, resulting in what we call a brittle process. One simple mistake, like a clogged nozzle, ruins the entire process.”

2025’s New VOLONAUT AIRBIKE — A Flying Motorcycle from the Future Unveiled!

We just celebrated May the 4th, and now this.


You’re watching: 2025’s VOLONAUT AIRBIKE – The Jet-Powered Flying Bike That’s Actually Real!

Forget sci-fi… this is the future happening right now. The Volonaut Airbike isn’t just a concept or a CGI teaser — it’s a real, jet-powered flying bike that’s already tearing through the skies in 2025!

Unlike bulky drones with spinning blades, this beast lifts off with raw jet propulsion — no exposed rotors, no cockpit, and no nonsense. It’s built from carbon fiber and 3D-printed parts, making it ultra-light — 7x lighter than a motorcycle. The rider becomes part of the machine, steering it by body movement while a smart onboard flight computer keeps everything stable.

Created by Tomasz Patan, the genius behind Jetson ONE, the Volonaut Airbike is capable of reaching speeds up to 200 km/h (124 mph), soaring over forests, cliffs, and even deserts with mind-blowing agility.

Self-powered artificial synapse mimics human color vision

As artificial intelligence and smart devices continue to evolve, machine vision is taking an increasingly pivotal role as a key enabler of modern technologies. Unfortunately, despite much progress, machine vision systems still face a major problem: Processing the enormous amounts of visual data generated every second requires substantial power, storage, and computational resources. This limitation makes it difficult to deploy visual recognition capabilities in edge devices, such as smartphones, drones, or autonomous vehicles.

Interestingly, the human visual system offers a compelling alternative model. Unlike conventional machine vision systems that have to capture and process every detail, our eyes and brain selectively filter information, allowing for higher efficiency in visual processing while consuming minimal power.

Neuromorphic computing, which mimics the structure and function of biological neural systems, has thus emerged as a promising approach to overcome existing hurdles in computer vision. However, two major challenges have persisted. The first is achieving color recognition comparable to human vision, whereas the second is eliminating the need for external power sources to minimize energy consumption.

AI-enabled control system helps autonomous drones stay on target in uncertain environments

An autonomous drone carrying water to help extinguish a wildfire in the Sierra Nevada might encounter swirling Santa Ana winds that threaten to push it off course. Rapidly adapting to these unknown disturbances inflight presents an enormous challenge for the drone’s flight control system.

To help such a stay on target, MIT researchers developed a new, machine learning-based adaptive control algorithm that could minimize its deviation from its intended trajectory in the face of unpredictable forces like gusty winds.

The study is published on the arXiv preprint server.

Securing Your Airspace: Detection of Drones Trespassing Protected Areas

Unmanned Aerial Vehicle (UAV) deployment has risen rapidly in recent years. They are now used in a wide range of applications, from critical safety-of-life scenarios like nuclear power plant surveillance to entertainment and hobby applications…