Toggle light / dark theme

The phenomenon of biological ultraweak photon emission (UPE), that is, extremely low-intensity emission (10 103 photons/cm2/sec) in the spectral range of 200 1,000 nm, has been observed in all living systems that have been examined. Here we report experiments that exemplify the ability of novel imaging systems to detect variations in UPE for a set of physiologically important scenarios. We use EMCCD and CCD cameras to capture single visible-wavelength photons with low noise and quantum efficiencies higher than 90%. Our investigation reveals significant contrast between the UPE from live vs. dead mice. In plants we observed that an increase in temperature and injuries both caused an increase in UPE intensity. Moreover, chemical treatments modified the UPE emission characteristics of plants, particularly the application of an anesthetic (benzocaine) to injury, which showed the highest emission among the compounds tested. As a result, UPE imaging provides the possibility of non-invasive label-free imaging of vitality in animals and the responses of plants to stress.

The authors have declared no competing interest.

Crystals are not alive, yet they grow, form complex structures, and even conduct electricity. Could life emerge from crystals rather than carbon-based molecules? Explore the intriguing possibility of crystal-based lifeforms, the challenges they would face, and the conditions where they might thrive. We journey to five exotic worlds—Vulcan, Ribbon World, Longenacht, Telluride, and Tempest—each offering unique environments where crystalline life might take hold. Could such life develop naturally, or might humanity one day engineer it? Join us as we dive into the cutting-edge science and speculative possibilities of crystalline biology.

Watch my exclusive video The End of Science https://nebula.tv/videos/isaacarthur–… Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa… Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30. Visit our Website: http://www.isaacarthur.net Join Nebula: https://go.nebula.tv/isaacarthur Support us on Patreon: / isaacarthur Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Facebook Group: / 1,583,992,725,237,264 Reddit: / isaacarthur Twitter: / isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server: / discord Credits: Crystal Aliens Episode 436a; March 1, 2024 Written, Produced & Narrated by: Isaac Arthur Graphics: Jeremy Jozwik, Real Courte Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Crystal Aliens.
Episode 436a; March 1, 2024
Written, Produced & Narrated by: Isaac Arthur.
Graphics: Jeremy Jozwik, Real Courte.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator

How did life originate? Ancient proteins may hold important clues. Every organism on Earth is made up of proteins. Although all organisms—even single-celled ones—have complex protein structures now, this wasn’t always the case.

For years, evolutionary biochemists assumed that most emerged from a simple signature, called a motif. However, new research suggests that this motif, without the surrounding protein, isn’t as consequential as it seemed. The study is published in the journal Molecular Biology and Evolution.

The international team of researchers was led by Lynn Kamerlin, a professor in the Georgia Tech School of Chemistry and Biochemistry and Georgia Research Alliance Vasser Woolley Chair in Molecular Design, and Liam Longo, a specially appointed associate professor at the Earth-Life Science Institute at the Institute of Science Tokyo, in Japan.

A multi-institutional collaboration of synthetic biology research centers in China has developed a genetically engineered strain of Vibrio natriegens capable of bioremediating complex organic pollutants, including biphenyl, phenol, naphthalene, dibenzofuran, and toluene, in saline wastewater and soils.

Complex are prevalent in industrial wastewater generated by petroleum refining and chlor-alkali processing. Due to their and resistance to natural degradation, these compounds persist in marine and saline environments, posing ecological risks and potential threats to public health.

Microbial bioremediation methods typically use consortia of wild-type bacterial strains, yet these organisms demonstrate limited capacity to degrade complex pollutant mixtures. Elevated salinity levels further inhibit bacterial activity, diminishing bioremediation efficacy in industrial and marine wastewater. Developing capable of degrading pollutants while tolerating saline conditions remains a critical challenge.

Life truly is radiant, according to an experiment conducted by researchers from the University of Calgary and the National Research Council of Canada.

An extraordinary experiment on mice and leaves from two different plant species has uncovered direct physical evidence of an eerie ‘biophoton’ phenomenon ceasing on death, suggesting all living things – including humans – could literally glow with health, until we don’t.

The findings might seem a little fringe at first glance. It’s hard not to associate scientific investigations into biological electromagnetic emissions with debunked and paranormal claims of auras and discharges surrounding living organisms.

In the domain of artificial intelligence, human ingenuity has birthed entities capable of feats once relegated to science fiction. Yet within this triumph of creation resides a profound paradox: we have designed systems whose inner workings often elude our understanding. Like medieval alchemists who could transform substances without grasping the underlying chemistry, we stand before our algorithmic progeny with a similar mixture of wonder and bewilderment. This is the essence of the “black box” problem in AI — a philosophical and technical conundrum that cuts to the heart of our relationship with the machines we’ve created.

The term “black box” originates from systems theory, where it describes a device or system analyzed solely in terms of its inputs and outputs, with no knowledge of its internal workings. When applied to artificial intelligence, particularly to modern deep learning systems, the metaphor becomes startlingly apt. We feed these systems data, they produce results, but the transformative processes occurring between remain largely opaque. As Pedro Domingos (2015) eloquently states in his seminal work The Master Algorithm: “Machine learning is like farming. The machine learning expert is like a farmer who plants the seeds (the algorithm and the data), harvests the crop (the classifier), and sells it to consumers, without necessarily understanding the biological mechanisms of growth” (p. 78).

This agricultural metaphor points to a radical reconceptualization in how we create computational systems. Traditionally, software engineering has followed a constructivist approach — architects design systems by explicitly coding rules and behaviors. Yet modern AI systems, particularly neural networks, operate differently. Rather than being built piece by piece with predetermined functions, they develop their capabilities through exposure to data and feedback mechanisms. This observation led AI researcher Andrej Karpathy (2017) to assert that “neural networks are not ‘programmed’ in the traditional sense, but grown, trained, and evolved.”

The notion that the quantum realm somehow sits sealed off from the relativistic domain has captured popular imagination for decades. Perhaps this separation is comforting in a way, because it assigns neat boundaries to a notoriously complex theoretical landscape. Yet, a careful look at both cutting-edge research and historical development suggests that no such invisible barrier actually exists. Early quantum pioneers such as Planck (1901) and Heisenberg (1925) laid foundations that seemed confined to the minuscule domain of atoms and subatomic particles. Before long, Einstein (1916) showed us that gravity and motion operate in ways that defy purely Newtonian conceptions, especially at cosmic scales. Despite the apparent chasm between the quantum and relativistic descriptions, threads of continuity run deeper than we once imagined. The famous energy discretization proposed by Planck was intended to solve classical paradoxes at microscopic scales, but the fundamental constants he unveiled remain essential at any size, linking the behavior of infinitesimal systems to grand cosmic events.

Modern experiments push this continuity further into the mainstream conversation. Quantum coherences documented in biological processes illuminate the reality that phenomena once labeled “strictly quantum” can permeate living systems in everyday environments (Engel et al., 2007). Photosynthesizing cells exploit wave-like energy flows, migratory birds appear to navigate using subtle quantum effects, and intriguing evidence suggests that neuronal microtubules might process information at scales once deemed too large for quantum behavior (Hameroff, 1998). If relativity reliably predicts how massive objects curve spacetime, and quantum theory demonstrates how particles and fields manifest as discrete excitations, then the missing piece in unifying these perspectives may hinge on the realization that neither domain is airtight. We stand on a continuum of phenomena, from photosynthetic molecules absorbing photons to astrophysical bodies warping spacetime.

Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science. Respective papers are linked below.

Round 1 Interview | What are Cognitive Light Cones? • What are Cognitive Light Cones? (Mich…
Round 2 Interview | Agency, Attractors, & Observer-Dependent Computation in Biology & Beyond • Agency, Attractors, & Observer-Depend…

Bioelectric Networks: The cognitive glue enabling evolutionary scaling from physiology to mind https://link.springer.com/article/10
Darwin’s Agential Materials: Evolutionary implications of multiscale competency in developmental biology https://link.springer.com/article/10
Biology, Buddhism, and AI: Care as the Driver of Intelligence https://www.mdpi.com/1099-4300/24/5/710

Bioelectric Networks as \.