Toggle light / dark theme

Anticipation of a virtual infectious pathogen is enough to prompt real biological defenses

Researchers led by the University of Geneva and École Polytechnique Fédérale de Lausanne report that neural anticipation of virtual infection triggers an immune response through activation of innate lymphoid cells.

Innate lymphoid cells (ILCs) are a type of immune cell crucial for early immune responses. They do not rely on antigen recognition like adaptive immune cells but respond quickly and effectively to various inflammatory signals and pathogen-associated cues, playing an essential role in early defense.

Protecting the body from pathogens typically involves a multitude of responses after actual contact. An anticipatory biological immune reaction to an infection had not been previously demonstrated.

Tiny artificial cells maintain 24-hour cycles like living organisms

A team of UC Merced researchers has shown that tiny artificial cells can accurately keep time, mimicking the daily rhythms found in living organisms. Their findings shed light on how biological clocks stay on schedule despite the inherent molecular noise inside cells.

The study, published in Nature Communications, was led by bioengineering Professor Anand Bala Subramaniam and chemistry and biochemistry Professor Andy LiWang. The first author, Alexander Zhang Tu Li, earned his Ph.D. in Subramaniam’s lab.

Biological clocks—also known as —govern 24-hour cycles that regulate sleep, metabolism and other vital processes. To explore the mechanisms behind the circadian rhythms of cyanobacteria, the researchers reconstructed the clockwork in simplified, cell-like structures called vesicles. These vesicles were loaded with core clock proteins, one of which was tagged with a fluorescent marker.

Bacteria-based sensors deliver real-time detection of arsenite and cadmium in water

Researchers at Rice University have engineered E. coli to act as living multiplexed sensors, allowing these genetically modified cells to detect and respond to multiple environmental toxins simultaneously by converting their biological responses into readable electrical signals. This innovation opens the door to real-time, remote monitoring of water systems, pipelines and industrial sites with potential future applications in biocomputing.

A new study published in Nature Communications demonstrates an innovative method for the real-time, on-site detection of arsenite and cadmium at levels set by the Environmental Protection Agency.

This research, led by Xu Zhang, Marimikel Charrier and Caroline Ajo-Franklin, addresses a significant inefficiency in current bioelectronic sensors, which typically require dedicated communication channels for each target compound. The research team’s multiplexing strategy greatly enhances information throughput by leveraging bacteria’s innate sensitivity and adaptability within a self-powered platform.

New microscope creates 3D ghost images of nanoparticles using entangled photons

Ghost imaging is like a game of Battleship. Instead of seeing an object directly, scientists use entangled photons to remove the background and reveal its silhouette. This method can be used to study microscopic environments without much light, which is helpful for avoiding photodamage to biological samples.

Deep-sea fish confirmed as a significant source of ocean carbonate

A new study offers the first direct evidence that deep-dwelling mesopelagic fish, which account for up to 94% of global fish biomass, excrete carbonate minerals at rates comparable to shallow-water species. The findings validate previous global models suggesting that marine fish are major contributors to biogenic carbonate production in the ocean.

Scientists at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science studied the blackbelly rosefish (Helicolenus dactylopterus), a deep-sea species living at depths of 350–430 meters (1,148–1,410 feet), to determine whether it forms and excretes intestinal carbonate—known as ichthyocarbonate. This physiological process, common among marine fish, helps maintain internal salt and water balance in saline environments and plays a critical role in marine carbon cycling.

The study, titled “Osmoregulation by the gastro-intestinal tract of at depth—implications for the global carbon cycle,” was published on July 15, 2025 in the Journal of Experimental Biology.

Scientists create an artificial cell capable of navigating its environment using chemistry alone

Researchers at the Institute for Bioengineering of Catalonia (IBEC) have created the world’s simplest artificial cell capable of chemical navigation, migrating toward specific substances like living cells do.

This breakthrough, published in Science Advances, demonstrates how microscopic bubbles can be programmed to follow chemical trails. The study describes the development of a “minimal cell” in the form of a lipid encapsulating enzymes that can propel itself through chemotaxis.

Cellular transport is a vital aspect of many biological processes and a key milestone in evolution. Among all types of movement, chemotaxis is an essential strategy used by many living systems to move towards beneficial signals, such as nutrients, or away from harmful ones.

Neutron beam platform unites simulation and biology for advanced therapy research

One of ANSTO’s advanced imaging instruments Dingo now delivers a rare fusion of simulation and radiobiology, becoming a launchpad for an innovative neutron therapy innovation.

This unique scientific capability comprises a single research platform for high-fidelity simulation, real-time dosimetry, and biological response data—all from a neutron beam instrument.

Two new papers published in Scientific Reports report how ANSTO researchers have adapted neutron tomography into a fully integrated testbed for neutron capture therapy research. The platform allows scientists to model conditions, plan experiments, and irradiate , all within a validated, operational system.

Cryonics in Space, Cryostasis Repair Science & Revival Ethics

Cryonics in space, cryostasis repair science, and revival ethics and planning are converging in 2025 to shape a bold new vision for life extension and post-biological freedom.

Join us Thursday, July 31 at 6 PM EST for a virtual service featuring two of cryonics’ leading voices:

Rudy Hoffman – Immortality Through Innovation.
Rudy opens with the visionary idea of cryonics in space and shares how today’s planning tools—annuity structures, revival trusts, and insurance-backed systems—support long-term access to biostasis. He ends with a powerful call to preserve freedom in the era of revival governance.

Alex Crouch – The Bridges to Reanimation.
Founder of Revival Research Group, Alex outlines the six bridges of cryostasis repair science, covering nanotech repair, AI orchestration, simulation, and bioprinting. His roadmap aims to make revival a transparent, collaborative goal.

Opening remarks by Neal Vanderee, officiator of the Church of Perpetual Life, connecting science, spirit, and future readiness.

Schedule:

The Lasting Impact Of Daniel Dennett In Philosophy And Leadership

An academic whose work reaches beyond the Ivory Tower is rare. Scholarly writing tends to be highly technical, filled with footnotes and references, and often lacks a compelling narrative to captivate the reader. Not to mention that the work itself is usually deemed irrelevant and impractical for public knowledge.

The American philosopher Daniel Dennett (1942−2024) was, without a doubt, one of these generational thinkers who transcended the academic box. Why? His writing is filled with clear and interesting thought experiments, allowing anyone to grasp his theories, which span from philosophy, cognitive science and evolutionary biology to farming, sailing, and religion. Any curious person can find a relevant topic relating to their life in Dennett’s vast body of work, and it will likely have them questioning whether they actually understood the topic in the first place.

To celebrate the life and work of Dennett, the aptly named Dennett Prize was introduced in 2024. Like Dennett, the winner should “challenge received ideas and introduce new perspectives.” The prize is presented as part of the International Center for Consciousness Studies (ICCS) annual conference, held this year in Heraklion, Crete, earlier this month. The inaugural winner of the Dennett Prize was given to Andy Clark, professor of cognitive philosophy at the University of Sussex.

/* */