Archive for the ‘biological’ category: Page 3

Nov 4, 2021

A new dimension in magnetism and superconductivity is launched

Posted by in categories: biological, chemistry, nanotechnology, particle physics

An international team of scientists from Austria and Germany has launched a new paradigm in magnetism and superconductivity, putting effects of curvature, topology, and 3D geometry into the spotlight of next-decade research. The results are published in Advanced Materials.

Traditionally, the primary field in which curvature plays a pivotal role is the theory of general relativity. In recent years, however, the impact of curvilinear geometry has entered various disciplines, ranging from solid-state physics to soft-matter physics to chemistry and biology; and giving rise to a plethora of emerging domains, such as curvilinear cell biology, semiconductors, superfluidity, optics, plasmonics and 2D van der Waals materials. In modern magnetism, superconductivity and , extending nanostructures into the has become a major research avenue because of geometry-, curvature-and topology-induced phenomena. This approach provides a means to improve conventional functionalities and to launch novel functionalities by tailoring the curvature and 3D shape.

“In recent years, there have appeared experimental and theoretical works dealing with curvilinear and three-dimensional superconducting and (anti-)ferromagnetic nano-architectures. However, these studies originate from different scientific communities, resulting in the lack of knowledge transfer between such fundamental areas of condensed matter physics as magnetism and superconductivity,” says Oleksandr Dobrovolskiy, head of the SuperSpin Lab at the University of Vienna. “In our group, we lead projects in both these topical areas and it was the aim of our perspective article to build a ‘bridge’ between the magnetism and superconductivity communities, drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities upon solid-state systems.”

Nov 3, 2021

Quantum physics in proteins: AI affords unprecedented insights into how biomolecules work

Posted by in categories: biological, chemistry, quantum physics, robotics/AI

A new analytical technique is able to provide hitherto unattainable insights into the extremely rapid dynamics of biomolecules. The team of developers, led by Abbas Ourmazd from the University of Wisconsin–Milwaukee and Robin Santra from DESY, is presenting its clever combination of quantum physics and molecular biology in the scientific journal Nature. The scientists used the technique to track the way in which the photoactive yellow protein (PYP) undergoes changes in its structure in less than a trillionth of a second after being excited by light.

“In order to precisely understand biochemical processes in nature, such as photosynthesis in certain bacteria, it is important to know the detailed sequence of events,” Santra says. “When light strikes photoactive proteins, their spatial structure is altered, and this structural change determines what role a protein takes on in nature.”

Until now, however, it has been almost impossible to track the exact sequence in which structural changes occur. Only the initial and final states of a molecule before and after a reaction can be determined and interpreted in theoretical terms. “But we don’t know exactly how the energy and shape changes in between the two,” says Santra. “It’s like seeing that someone has folded their hands, but you can’t see them interlacing their fingers to do so.”

Nov 3, 2021

How To Build a Real IRON MAN SUIT — Nanosuits & Neuromorphic Computing

Posted by in categories: biological, nanotechnology, robotics/AI, singularity, space travel

The future of Neuromorphic computing and nanotechnology enabling real life Nanosuits is already here according to several leading scientists in that field. Whether it’s the Nanosuit from Iron Man or from Crysis, the nanobots and brain computer interfaces which make those intelligent smart clothes up work in a very similar way.

Neuromorphic computing essentially involves assembling artificial neurons to function based on the principles of the human brain. It works on Spiking Neural Networks or SNNs, where each “neuron” sends independent signals to other neurons. It emulates natural neural networks that exist in biological brains.

Every day is a day closer to the Technological Singularity. Experience Robots learning to walk & think, humans flying to Mars and us finally merging with technology itself. And as all of that happens, we at AI News cover the absolute cutting edge best technology inventions of Humanity.

Continue reading “How To Build a Real IRON MAN SUIT — Nanosuits & Neuromorphic Computing” »

Nov 2, 2021

“Genetic Goldmine” Uncovered for Plant Survival in One of the Harshest Environments on Earth

Posted by in categories: bioengineering, biological, climatology, genetics, sustainability

Evolutionary genomics approach identifies genes that enable plants to live in the Atacama Desert, offering clues for engineering more resilient crops to face climate change.

An international team of researchers has identified genes associated with plant survival in one of the harshest environments on Earth: the Atacama Desert in Chile. Their findings, published in Proceedings of the National Academy of Sciences (PNAS), may help scientists breed resilient crops that can thrive in increasingly drier climates.

“In an era of accelerated climate change, it is critical to uncover the genetic basis to improve crop production and resilience under dry and nutrient-poor conditions,” said Gloria Coruzzi, Carroll & Milton Petrie Professor in the New York University (NYU) Department of Biology and Center for Genomics and Systems Biology, who co-led the study with Rodrigo Gutiérrez.

Continue reading “‘Genetic Goldmine’ Uncovered for Plant Survival in One of the Harshest Environments on Earth” »

Nov 2, 2021

Her Machine Learning Tools Pull Insights From Cell Images

Posted by in categories: biological, robotics/AI

If you had told college-aged Anne, “22 years from now, you’re going to be leading a research group focused on AI,” I would have said you’re insane. It would not have been possible to make this shift into machine learning without having made friends with machine learning experts — particularly Jones.

After he and I finished our training at MIT, we started a lab together at the Broad Institute in 2,007 and we brainstormed a lot about how machine learning could help biologists. What allowed these ideas to percolate and develop was both of us hopping over the fence and getting familiar with the terminology and power of both sides, biology and computer science. It’s really a productive partnership.

And it’s not just Jones anymore. My group is about 50–50 in terms of people coming from the biology side versus the computational side.

Continue reading “Her Machine Learning Tools Pull Insights From Cell Images” »

Nov 2, 2021

Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life

Posted by in categories: biological, chemistry

Coacervate droplets (CDs) are a model for protocells formed by liquid-liquid phase separation (LLPS), but protocell models able to proliferate remain undeveloped. Here, the authors report a proliferating peptide-based CD using synthesised amino acid thioesters as monomers, which could concentrate RNA and lipids, enabling RNA to protect the droplet from dissolution by lipids.

Oct 30, 2021

A novel way to generate visible light

Posted by in category: biological

Visible light is extremely important in nature. Seen by the human eye, it is the most intense light emitted by the sun to reach the earth’s surface and is an essential element for fundamental biological processes underlying life. However, it is difficult to generate coherent visible light, like the light of a laser, that is intense for a short amount of time, in the order of the femtosecond.

A research team, directed by Professor Luca Razzari of the Institut national de la recherche scientifique (INRS), has successfully achieved this goal without using a complicated system. The results of their work were recently published in Nature Photonics.

Oct 30, 2021

China’s growth is rapidly slowing as the nation enters a ‘once-in-2-decades restructuring,’ Bank of America warns. Investors can protect themselves

Posted by in categories: biological, robotics/AI

What if aliens have passed beyond the biological stage and resemble artificial intelligence more than they resemble any expected living thing.

Oct 27, 2021

Global catastrophic and existential risks: the weightiest complex phenomena?

Posted by in categories: biological, ethics, existential risks, food

Anders Sandberg, University of Oxford.

One of the deepest realizations of the scientific understanding of the world that emerged in the 18th and 19th century is that the world is changing, that it has been radically different in the past, that it can be radically different in the future, and that such changes could spell the end of humanity as we know it. An added twist arrived in the 20th century: we could ourselves be the cause of our demise. In the late 20th century an interdisciplinary field studying global catastrophic and existential risks emerged, driven by philosophical concern about the moral weight of such risks and the realization that many such risks show important commonalities that may allow us as a species to mitigate them. For example, much of the total harm from nuclear wars, supervolcanic eruptions, meteor impacts and some biological risks comes from global agricultural collapse. This talk is going to be an overview of the world of low-probability, high-impact risks and their overlap with questions of complexity in the systems generating or responding to them. Understanding their complex dynamics may be a way of mitigating them and ensuring a happier future.

Continue reading “Global catastrophic and existential risks: the weightiest complex phenomena?” »

Oct 26, 2021

Microbes Could Help Produce Rocket Fuel for Return Trips from Mars

Posted by in categories: biological, space

Georgia Tech scientists believe that microbes could be the key to producing the rocket fuel needed to take humans from Mars back to Earth.

Page 3 of 11512345678Last