Menu

Blog

Archive for the ‘biological’ category: Page 6

Apr 29, 2022

‘Doomed’ Moon Phobos Is Going To Crash Into Mars

Posted by in categories: biological, physics, space

Last week, NASA’s Perseverance Rover captured a gorgeous view of Phobos eclipsing the Sun, from the surface of Mars. From the point of view of any Martian microbes lurking out there, the eclipse may have seemed more ominous (yeah ok, there might not be living organisms up there, let alone ones sentient enough to grasp the concept of an eclipse) as the moon is destined by physics to one day slam into the red planet.

Phobos – the closest of Mars’ two moons – is set to get ever closer to the planet, before its final descent, while Deimos will drift ever outwards until it leaves Mars’ orbit.

Apr 29, 2022

What is Synthetic Biology? How Scientists Are Rewriting Life | Amanpour and Company

Posted by in categories: bioengineering, biological

Award-winning author and futurist Amy Webb examines the world of synthetic biology in her book “The Genesis Machine.” She sits down with Hari Sreenivasan to discuss the potential and the concerns of redesigning our lives.

Originally aired on April 28, 2022.

Continue reading “What is Synthetic Biology? How Scientists Are Rewriting Life | Amanpour and Company” »

Apr 27, 2022

Engineered jumpers overcome biological limits via work multiplication

Posted by in category: biological

Apr 25, 2022

Combining turgor design and electro-osmosis to create strong and fast hydrogel actuators

Posted by in categories: biological, robotics/AI

A team of researchers at Seoul National University has created a stronger and faster hydrogel actuator by combining turgor design and electro-osmosis. In their paper published in the journal Science, the group describes their approach and how well the resulting actuator performed when tested in a real-world experiment. Zhen Jiang and Pingan Song, with the University of Southern Queensland, outline some of the difficulties researchers have faced in trying to create hydrogels that imitate biological organisms and comment on the work done by the team in Korea in a Perspective article published in the same journal issue.

Hydrogels, as their name suggests, are gels made with a water base. Roboticists have been studying them closely for several years. The goal is to create soft actuators, which are deformable components that are able to interact with the environment in desired ways. To succeed, the actuator needs to be able to convert some form of energy into mechanical work, similar in some sense to human muscles. To make them more useful, scientists would like them to have stronger actuation forces than are now possible and to respond faster when the need arises. In this new effort, the researchers have taken another step toward achieving both goals.

The team created a hydrogel using standard techniques but enclosed it in a highly osmotic and stiff wrapping. The stiffness was designed to contain a swelling environment as a liquid made its way into the turgor cell-like construction. This allowed pressure to build up, and as it did so, it exerted a force against nearby objects. Testing of the cell showed it created enough force (730 N) to split a common building brick. The researchers note that such force was approximately 1,000 times greater than any other known hydrogel. And to speed up the action, the researchers applied an electric current, which drove the actuation speed to 19 times that of its normal osmotic rate.

Apr 25, 2022

163 years later, new research challenges Darwin’s most famous theory about sex

Posted by in categories: biological, sex

Do Charles Darwin’s ideas on sexual selection hold up today? The biologist was very much of his time, which meant it may have shaped his understanding of evolutionary biology.

Apr 24, 2022

Air Protein creates fake steak from CO2 that replicates taste and texture of meat

Posted by in categories: biological, sustainability

California-based startup Air Protein has developed a meat alternative called Air Meat, which is made using microbes that turn recycled carbon dioxide into protein.

Described by Air Protein as “the meat of tomorrow”, Air Meat was designed to replicate the flavour and texture of real meat products such as steak.

Apr 22, 2022

An ocean in your brain: Interacting brain waves key to how we process information

Posted by in categories: biological, computing, neuroscience

For years, the brain has been thought of as a biological computer that processes information through traditional circuits, whereby data zips straight from one cell to another. While that model is still accurate, a new study led by Salk Professor Thomas Albright and Staff Scientist Sergei Gepshtein shows that there’s also a second, very different way that the brain parses information: through the interactions of waves of neural activity. The findings, published in Science Advances on April 22, 2022, help researchers better understand how the brain processes information.

“We now have a new understanding of how the computational machinery of the brain is working,” says Albright, the Conrad T. Prebys Chair in Vision Research and director of Salk’s Vision Center Laboratory. “The model helps explain how the brain’s underlying state can change, affecting people’s attention, focus, or ability to process information.”

Researchers have long known that waves of electrical activity exist in the brain, both during sleep and wakefulness. But the underlying theories as to how the brain processes information—particularly , like the sight of a light or the sound of a bell—have revolved around information being detected by specialized and then shuttled from one neuron to the next like a relay.

Apr 22, 2022

Topological synchronization of chaotic systems

Posted by in categories: biological, physics

Can we find order in chaos? Physicists have shown, for the first time that chaotic systems can synchronize due to stable structures that emerge from chaotic activity. These structures are known as fractals, shapes with patterns which repeat over and over again in different scales of the shape. As chaotic systems are being coupled, the fractal structures of the different systems will start to assimilate with each other, taking the same form, causing the systems to synchronize.

If the systems are strongly coupled, the structures of the two systems will eventually become identical, causing complete synchronization between the systems. These findings help us understand how synchronization and can emerge from systems that didn’t have these properties to begin with, like chaotic systems and .

One of the biggest challenges today in physics is to understand chaotic systems. Chaos, in physics, has a very specific meaning. Chaotic systems behave like random systems. Although they follow deterministic laws, their dynamics still will change erratically. Because of the well-known “butterfly effect” their future behavior is unpredictable (like the weather system, for example).

Apr 22, 2022

Interacting Brain Waves Key to How We Process Information

Posted by in categories: biological, computing, neuroscience

Summary: Study reveals the different ways the brain parses information through interactions of waves of neural activity.

Source: Salk Institute.

For years, the brain has been thought of as a biological computer that processes information through traditional circuits, whereby data zips straight from one cell to another. While that model is still accurate, a new study led by Salk Professor Thomas Albright and Staff Scientist Sergei Gepshtein shows that there’s also a second, very different way that the brain parses information: through the interactions of waves of neural activity.

Apr 21, 2022

A biological motor that consumes chiral fuel drives rotation in one direction around a single covalent bond

Posted by in categories: biological, chemistry, internet, nanotechnology, particle physics

Bart Blommaertsif it helps. But don’t cut internet cables with that thing!!

Andreas StürmerFinally. Is it going to be a rail or car tunnel?

Eric KlienAdmin.

Continue reading “A biological motor that consumes chiral fuel drives rotation in one direction around a single covalent bond” »

Page 6 of 130First345678910Last