Toggle light / dark theme

What do albatrosses searching for food, stock market fluctuations, and the dispersal patterns of seeds in the wind have in common?

They all exhibit a type of movement pattern called Lévy walk, which is characterized by a flurry of short, localized movements interspersed with occasional, long leaps. For living organisms, this is an for balancing the exploitation of nearby resources with the exploration of new opportunities when the distribution of resources is sparse and unknown.

Originally described in the context of particles drifting through liquid, Lévy walk has been found to accurately describe a very wide range of phenomena, from cold atom dynamics to swarming bacteria. And now, a study published in Complexity has for the first time found Lévy walk in the movements of competing groups of organisms: soccer teams.

A research team led by Prof. Jiang Changlong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed an innovative dual-mode sensing platform using upconversion nanoparticles (UCNPs). This platform integrates fluorescence and colorimetric methods, offering a highly sensitive and low-detection-limit solution for bilirubin detection in complex biological samples.

The findings, published in Analytical Chemistry, offer a new technological approach for the early diagnosis of jaundice.

Jaundice is a critical health issue in neonates, affecting 60% of newborns and contributing to early neonatal mortality. Elevated free bilirubin levels indicate jaundice, with healthy levels ranging from 1.7 μM to 10.2 μM in healthy individuals. Concentrations below 32 μM typically don’t show classic symptoms. Rapid and accurate detection of bilirubin in neonates is critical.

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about bitterness receptors on our skin.
Links:
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2024-00074
https://gut.bmj.com/content/63/1/179
https://www.frontiersin.org/journals/nutrition/articles/10.3…15889/full.
Other skin discoveries: https://youtu.be/8CRH-rYNleo.
#bitter #taste #biology.

0:00 Bitterness receptors on our skin! But why?
1:25 Taste receptors and 5 tastes.
2:30 Animal differences and why bitterness receptors vary so much.
4:00 Why humans are losing bitterness receptors.
5:10 Other effects of bitterness receptors.
6:15 Skin receptors?
6:45 New study and evidence for toxicity hypothesis.
8:20 Conclusions and what this means.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

“The Future of Human Evolution: AI, Genetic Engineering, and the Rise of Post-Human Civilization”

What happens when human evolution is no longer shaped by nature but by artificial intelligence and genetic engineering? This story explores the rise of AI-enhanced humans in a futuristic medieval world, where the fusion of bioengineering, AI consciousness, and neural implants creates a post-human era. As civilizations embrace transhumanism, traditional humanity faces extinction, replaced by a new species of synthetic life. Will this AI-driven society achieve ultimate enlightenment, or will it lose the essence of what makes us human?
The battle between future civilization, advanced technology, and those clinging to the past intensifies as digital immortality reshapes the meaning of existence. This cybernetic future forces us to question our identity—can genetic modification and AI singularity coexist with the soul of humanity? Witness the evolution of intelligence, the struggle between AI vs humanity, and the uncertain fate of a world where consciousness itself is no longer biological.

0:00 — Introduction: The Future of Human Evolution.
8:25 — AI & Genetic Engineering: Unlocking Human Potential.
16:50 — Ethical Dilemmas of Genetic Modification.
25:15 — The Rise of Engineered Intelligence.
33:40 — Genetic Enhancements & Social Stratification.
42:05 — AI in Education, Work, and Society.
50:30 — The Quest for Longevity & Immortality.
58:55 — Resistance Movements Against Enhancement.
1:07:20 — The First AI-Integrated Humans.
1:15:45 — The Breakdown of Traditional Humanity.
1:24:10 — Post-Human Civilizations & Digital Consciousness.
1:32:35 — The Divide Between Organic & Artificial Life.
1:41:00 — The Singularity & The End of Natural Evolution.
1:49:25 — What Comes After Humanity?

Sources.
Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
Harari, Y. N. (2017). Homo Deus: A Brief History of Tomorrow. Harper.
Kurzweil, R. (2005). The Singularity Is Near: When Humans Transcend Biology. Penguin.
Tegmark, M. (2017). Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf.
Goertzel, B. (2020). Artificial General Intelligence: Concept, State of the Art, and Future Directions. Springer.

#FutureOfHumanity #AIandGenetics #PostHumanEra #ArtificialEvolution #CyberneticFuture.

YOU MAY LIKE

(BURLINGTON, Vermont) – To persist, life must reproduce. Over billions of years, organisms have evolved many ways of replicating, from budding plants to sexual animals to invading viruses.

Now scientists at the University of Vermont, Tufts University, and the Wyss Institute for Biologically Inspired Engineering at Harvard University have discovered an entirely new form of biological reproduction—and applied their discovery to create the first-ever, self-replicating living robots.

A team of researchers has developed the first chip-scale titanium-doped sapphire laser—a breakthrough with applications ranging from atomic clocks to quantum computing and spectroscopic sensors.

The work was led by Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics. The results are published in Nature Photonics.

When the titanium-doped laser was introduced in the 1980s, it was a major advance in the field of lasers. Critical to its success was the material used as its gain medium—that is, the material that amplifies the laser’s energy. Sapphire doped with titanium ions proved to be particularly powerful, providing a much wider laser emission bandwidth than conventional semiconductor lasers. The innovation led to fundamental discoveries and countless applications in physics, biology, and chemistry.

Will Humans Have to Merge with AI to Survive?
What if the only way to survive the AI revolution is to stop being human?
Ray Kurzweil, one of the most influential futurists and the godfather of AI, predicts that humans will soon reach a turning point where merging with AI becomes essential for survival. But what does this truly mean? Will we evolve into superintelligent beings, or will we lose what makes us human?
In this video, we explore Kurzweil’s bold predictions, the concept of the Singularity, and the reality of AI-human integration. From Neuralink to the idea of becoming “human cyborgs,” we examine whether merging with AI is an inevitable step in human evolution—or a path toward losing our biological identity.
Are we truly ready for a world where there are no biological limitations?
Chapters:
Intro 00:00 — 01:11
Ray Kurzweil’s Predictions 01:11 — 02:23
Singularity Is Nearer 02:23 — 04:05
What Does “Merging with AI” Really Mean? 04:05 — 04:35
Neuralink 04:35 — 07:02
Why Would We Need to Merge with AI? 07:02 — 10:04
Human Life After Merging with AI 10:04 — 12:30
Idea of Becoming ‘Human Cyborg’ 12:30 — 14:33
No Biological Limitations 14:33 — 17:24
#RayKurzweil #AI #Singularity #HumanCyborg #FutureTech #ArtificialIntelligence

A notable aspect of the CL1 is its ability to learn and adapt to tasks. Previous research has demonstrated that neuron-based systems can be trained to perform basic functions, such as playing simple video games. Cortical Labs’ work suggests that integrating biological elements into computing could improve efficiency in tasks that traditional AI struggles with, such as pattern recognition and decision-making in unpredictable environments.

Cortical Labs says that the first CL1 computers will be available for shipment to customers in June, with each unit priced at approximately $35,000.

The use of human neurons in computing raises questions about the future of AI development. Biological computers like the CL1 could provide advantages over conventional AI models, particularly in terms of learning efficiency and energy consumption. The adaptability of neurons could lead to improvements in robotics, automation, and complex data analysis.