Menu

Blog

Archive for the ‘encryption’ category

Dec 9, 2024

Is DNA Data Storage Ready for Data Centers?

Posted by in categories: biotech/medical, computing, encryption, nanotechnology

Biobanks are an obvious use case for DNA data storage. “With this technology, you could convert a biobank that is the size of a football field into something that can fit with everything in the palm of your hand,” says Banal. With encapsulation technologies, the DNA samples can be stored at room temperature. Compared to storing samples in freezing conditions in conventional biobanks or data centers that require extensive cooling, this has significantly lower energy consumption.

Until recently, scientific and medical applications were the sole drivers behind storing data in DNA. New research could broaden its scope to cryptography and nanotechnology. Another interesting development is the emerging intersection of DNA data storage and DNA computing. Indexing methods for DNA data retrieval mentioned earlier are an early example of that. Today, one of the most pressing commercial drivers of the technology is the data centers.

As researchers and startups chip away at its limitations, DNA data storage is becoming a viable commercial solution for storing all kinds of data at scale. The DNA Data Storage Alliance, a consortium founded in 2020, counts legacy data storage giants such as Western Digital and Seagate among its members.

Dec 5, 2024

Unmatched Data Capacity and Security With Revolutionary Vortex Beams

Posted by in categories: computing, encryption, security

Researchers have developed an innovative optical technology capable of enhancing data transmission by utilizing spatial-frequency patching metasurfaces.

This approach allows light beams to carry significantly more data across multiple independent channels, overcoming traditional optical beam limitations. Its applications extend to secure communication, encryption, and advanced optical systems.

Revolutionary optical technology for data transmission.

Dec 4, 2024

Old Battles, New Wars: Rediscovering Encryption’s Power To Prevent Data Breaches

Posted by in categories: cybercrime/malcode, encryption, health

In this respect, I believe regulators have fallen short. In a world facing ongoing cyber threats, the standards for cybersecurity are set surprisingly low that their rules typically only recognize encryption of all stored data as a requirement. This is despite the fact that encryption—not firewalls, monitoring, identity management or multifactor authentication—is the purpose-built technology for protecting data against the strongest and most capable adversaries. Stronger regulations are needed to ensure encryption becomes a mandated standard, not just an optional recommendation.

Fortunately, companies need not wait until regulators realize their folly and can opt to do better today. Some companies already have. They approach data security as an exercise in risk mitigation rather than passing an audit. From this perspective, data encryption quickly becomes an obvious requirement for all their sensitive data as soon as it is ingested into a data store.

Another beneficial development is that encryption has become easier and faster to implement, including the ability to process encrypted data without exposure, a capability known as privacy-enhanced computation. While there will always be some overhead to adopting data encryption, many have found that the return on investment has shifted decisively in favor of encrypting all sensitive data due to its substantial security benefits.

Dec 2, 2024

Experiment realizes quantum advantage in data storage with a photonic quantum processor

Posted by in categories: computing, encryption, quantum physics

In recent years, quantum physicists and engineers have been trying to develop quantum computer processors that perform better than classical computers on some tasks. Yet conclusive demonstrations proving that quantum systems perform better than their classical counterparts (i.e., realizations of a quantum advantage) remain scarce, due to various experimental challenges.

Researchers at Henan Key Laboratory of Quantum Information and Cryptography and the S. N. Bose National Center for Basic Sciences carried out an experiment aimed at establishing the of an elementary quantum system for .

Their paper, published in Physical Review Letters, demonstrates that a single qubit can outperform a classical bit in a communication task that does not involve any shared randomness (i.e., classically correlated random variables between communicating parties).

Nov 30, 2024

An unexpected delay in a standard quantum optical process generates pairs of photons

Posted by in categories: encryption, energy, quantum physics

Since it was first demonstrated in the 1960s, spontaneous parametric down-conversion (SPDC) has been at the center of many quantum optics experiments that test the fundamental laws of physics in quantum mechanics, and in applications like quantum simulation, quantum cryptography, and quantum metrology.

SPDC is the spontaneous splitting of a photon into two after it passes through a nonlinear object like certain crystals. The process is nonlinear and instantaneous, and the two output photons (called the signal photon and idler photon) satisfy conservation of energy and momentum compared to the input photon (the pump photon). SPDC is often used with a specially designed crystal to create pairs of entangled photons.

A research team from Canada has discovered that there is a delay between the detection of the two output photons, one that depends on the intensity of the incoming light that impacts the crystal. They call this a “gain-induced group delay.”

Nov 23, 2024

Quantum Computing and state-sponsored Cyber Warfare: How quantum will transform Nation-State Cyber Attacks

Posted by in categories: cybercrime/malcode, encryption, information science, mathematics, military, quantum physics

The rise of quantum computing is more than a technological advancement; it marks a profound shift in the world of cybersecurity, especially when considering the actions of state-sponsored cyber actors. Quantum technology has the power to upend the very foundations of digital security, promising to dismantle current encryption standards, enhance offensive capabilities, and recalibrate the balance of cyber power globally. As leading nations like China, Russia, and others intensify their investments in quantum research, the potential repercussions for cybersecurity and international relations are becoming alarmingly clear.

Imagine a world where encrypted communications, long thought to be secure, could be broken in mere seconds. Today, encryption standards such as RSA or ECC rely on complex mathematical problems that would take traditional computers thousands of years to solve. Quantum computing, however, changes this equation. Using quantum algorithms like Shor’s, a sufficiently powerful quantum computer could factorize these massive numbers, effectively rendering these encryption methods obsolete.

This capability could give state actors the ability to decrypt communications, access sensitive governmental data, and breach secure systems in real time, transforming cyber espionage. Instead of months spent infiltrating networks and monitoring data flow, quantum computing could provide immediate access to critical information, bypassing traditional defenses entirely.

Nov 14, 2024

Post-Quantum API Security: Preparing Your APIs for Q-Day

Posted by in categories: computing, encryption, information science, quantum physics, security

In our increasingly interconnected digital world, the foundations of secure communication and data privacy are built upon cryptographic algorithms that have stood the test of time.


Discover how quantum computing threatens current API security and learn strategies to prepare your APIs for Q-Day by adopting post-quantum cryptography solutions.

Nov 13, 2024

Embracing The Future Of Cryptography And Identity Management

Posted by in categories: encryption, quantum physics

Looking ahead to 2025, it’s time for organizations to put the right tools and processes in place to prepare for post-quantum cryptography.

Nov 9, 2024

Dude, Where’s My Quantum Computer? Is the Field Stuck in Limbo?

Posted by in categories: bitcoin, computing, cryptocurrencies, encryption, internet, quantum physics

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about recent discoveries about quantum computers.
Links:
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.22.034003
http://cjc.ict.ac.cn/online/onlinepaper/wc-202458160402.pdf.
https://arxiv.org/pdf/2307.03236
https://www.science.org/doi/10.1126/sciadv.adn8907
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.QasmSimulator.html.
https://arxiv.org/abs/2302.00936
Previous videos:
https://youtu.be/Jl7RLrA69pg.

https://youtu.be/dPqNZ4aya8s.
#quantum #quantumcomputing #quantumcomputer.

Continue reading “Dude, Where’s My Quantum Computer? Is the Field Stuck in Limbo?” »

Nov 9, 2024

New tool bypasses Google Chrome’s new cookie encryption system

Posted by in categories: cybercrime/malcode, encryption

A researcher has released a tool to bypass Google’s new App-Bound encryption cookie-theft defenses and extract saved credentials from the Chrome web browser.

The tool, named ‘Chrome-App-Bound-Encryption-Decryption,’ was released by cybersecurity researcher Alexander Hagenah after he noticed that others were already figuring out similar bypasses.

Although the tool achieves what multiple infostealer operations have already added to their malware, its public availability raises the risk for Chrome users who continue to store sensitive data in their browsers.

Page 1 of 5912345678Last