Toggle light / dark theme

As the demand for digital security grows, researchers have developed a new optical system that uses holograms to encode information, creating a level of encryption that traditional methods cannot penetrate. This advance could pave the way for more secure communication channels, helping to protect sensitive data.

“From rapidly evolving digital currencies to governance, , communications and social networks, the demand for robust protection systems to combat digital fraud continues to grow,” said research team leader Stelios Tzortzakis from the Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas and the University of Crete, both in Greece.

“Our new system achieves an exceptional level of encryption by utilizing a to generate the decryption key, which can only be created by the owner of the encryption system.”

Their method scrambles laser beams into chaotic patterns, making decryption impossible without a trained neural network. This innovation could revolutionize cryptography.

Holograms for Next-Level Encryption

As the demand for digital security grows, researchers have developed a new optical system that uses holograms to encode information, creating a level of encryption that traditional methods cannot penetrate. This advance could pave the way for more secure communication channels, helping to protect sensitive data.

Quantum computers require extreme cooling to perform reliable calculations. One of the challenges preventing quantum computers from entering society is the difficulty of freezing the qubits to temperatures close to absolute zero.

Now, researchers at Chalmers University of Technology, Sweden, and the University of Maryland, U.S., have engineered a new type of refrigerator that can autonomously cool superconducting qubits to record , paving the way for more reliable quantum computation.

Quantum computers have the potential to revolutionize fundamental technologies in various sectors of society, with applications in medicine, energy, encryption, AI, and logistics. While the building blocks of a classical computer—bits—can take a value of either 0 or 1, the most common building blocks in quantum computers—qubits—can have a value of 0 and 1 simultaneously.

The U.S. Department of Health and Human Services (HHS) has proposed updates to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) to secure patients’ health data following a surge in massive healthcare data leaks.

These stricter cybersecurity rules, proposed by the HHS’ Office for Civil Rights (OCR) and expected to be published as a final rule within 60 days, would require healthcare organizations to encrypt protected health information (PHI), implement multifactor authentication, and segment their networks to make it harder for attackers to move laterally through them.

“In recent years, there has been an alarming growth in the number of breaches affecting 500 or more individuals reported to the Department, the overall number of individuals affected by such breaches, and the rampant escalation of cyberattacks using hacking and ransomware,” the HHS’ proposal says.

A quantum state of light has been successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.

The impressive demonstration by researchers in the US may not help you beam to work to beat the morning traffic, or download your favourite cat videos faster.

However, the ability to teleport quantum states through existing infrastructure represents a monumental step towards achieving a quantum-connected computing network, enhanced encryption, or powerful new methods of sensing.

Users of Google’s Chrome browser can rest easy knowing that their surfing is secure, thanks in part to cryptographer Joppe Bos. He’s coauthor of a quantum-secure encryption algorithm that was adopted as a standard by the U.S. National Institute of Standards and Technology (NIST) in August and is already being implemented in a wide range of technology products, including Chrome.

Rapid advances in quantum computing have stoked fears that future devices may be able to break the encryption used by most modern technology. These approaches to encryption typically rely on mathematical puzzles that are too complex for classical computers to crack. But quantum computers can exploit quantum phenomena like superposition and entanglement to compute these problems much faster, and a powerful enough machine should be able to break current encryption.

Quantum teleportation, once confined to the pages of science fiction, is steadily becoming a tangible scientific achievement. Advances in quantum mechanics over the last decade have transformed teleportation from a theoretical concept into an experimental reality.

These breakthroughs have revealed innovative methods for transmitting information instantaneously over vast distances, offering transformative possibilities for computing, communication, and cryptography. Scientists are now closer than ever to bridging the gap between imagination and reality in this cutting-edge field.

At its core, teleportation in the quantum world isn’t about physically transporting objects or people, as popularized by franchises like Star Trek. Instead, it involves transmitting quantum states—essentially the fundamental properties of particles like electrons or photons—without physical movement of the particles themselves.

Linköping University’s experiment confirms a key theoretical link between quantum mechanics and information theory, highlighting future implications for quantum technology and secure communication.

Researchers at Linköping University and their collaborators have successfully confirmed a decade-old theory linking the complementarity principle—a fundamental concept in quantum mechanics—with information theory. Their study, published in the journal Science Advances, provides valuable insights for understanding future quantum communication, metrology, and cryptography.

“Our results have no clear or direct application right now. It’s basic research that lays the foundation for future technologies in quantum information and quantum computers. There’s enormous potential for completely new discoveries in many different research fields,” says Guilherme B Xavier, researcher in quantum communication at Linköping University, Sweden.