Toggle light / dark theme

Journey to the center of a quantized vortex: How microscopic mutual friction governs superfluid dissipation

Step inside the strange world of a superfluid, a liquid that can flow endlessly without friction, defying the common-sense rules we experience every day, where water pours, syrup sticks and coffee swirls and slows under the effect of viscosity. In these extraordinary fluids, motion often organizes itself into quantized vortices: tiny, long-lived whirlpools that act as the fundamental building blocks of superfluid flow.

An international study conducted at the European Laboratory for Non-Linear Spectroscopy (LENS), involving researchers from CNR-INO, the Universities of Florence, Bologna, Trieste, Augsburg, and the Warsaw University of Technology, has embarked on this journey by investigating the dynamics of vortices within strongly interacting superfluids, uncovering the fundamental mechanisms that govern their behavior.

Using ultracold atomic gases, the scientists open a unique window into this exotic realm, recreating conditions similar to those found in superfluid helium-3, the interiors of neutron stars, and superconductors.

Lowering barriers to explainable AI: Control technique for LLMs reduces resource demands by over 90%

Large language models (LLMs) such as GPT and Llama are driving exceptional innovations in AI, but research aimed at improving their explainability and reliability is constrained by massive resource requirements for examining and adjusting their behavior.

To tackle this challenge, a Manchester research team led by Dr. Danilo S. Carvalho and Dr. André Freitas have developed new software frameworks—LangVAE and LangSpace—that significantly reduce both hardware and energy resource needs for controlling and testing LLMs to build explainable AI. Their paper is published on the arXiv preprint server.

Their technique builds compressed language representations from LLMs, making it possible to interpret and control these models using geometric methods (essentially treating the model’s internal language patterns as points and shapes in space that can be measured, compared and adjusted), without altering the models themselves. Crucially, their approach reduces computer resource usage by more than 90% compared with previous techniques.

AI uncovers double-strangeness: A new double-Lambda hypernucleus

Researchers from the High Energy Nuclear Physics Laboratory at the RIKEN Pioneering Research Institute (PRI) in Japan and their international collaborators have made a discovery that bridges artificial intelligence and nuclear physics. By applying deep learning techniques to a vast amount of unexamined nuclear emulsion data from the J-PARC E07 experiment, the team identified, for the first time in 25 years, a new double-Lambda hypernucleus.

This marks the world’s first AI-assisted observation of such an exotic nucleus—an atomic nucleus containing two strange quarks. The finding, published in Nature Communications, represents a major advance in experimental nuclear physics and provides new insight into the composition of neutron star cores, one of the most extreme environments in the universe.

NASA’s New Mission Will Expose Earth’s Invisible “Halo”

The region also plays a role in the gradual loss of hydrogen, a key component of water, or H2O. Tracking how hydrogen escapes from Earth may help explain why our planet has managed to hold onto its water while others have not, offering valuable clues in the search for potentially habitable exoplanets, or planets beyond our solar system.

NASA’s Carruthers Geocorona Observatory, named in honor of George Carruthers, is designed to capture the first continuous movies of Earth’s exosphere, revealing its full expanse and internal dynamics.

“We’ve never had a mission before that was dedicated to making exospheric observations,” said Alex Glocer, the Carruthers mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s really exciting that we’re going to get these measurements for the first time.”

NASA’s Webb, Curiosity Named in TIME’s Best Inventions Hall of Fame

Two icons of discovery, NASA’s James Webb Space Telescope and NASA’s Curiosity rover, have earned places in TIME’s “Best Inventions Hall of Fame,” which recognizes the 25 groundbreaking inventions of the past quarter century that have had the most global impact, since TIME began its annual Best Inventions list in 2000. The inventions are celebrated in TIME’s December print issue.

“NASA does the impossible every day, and it starts with the visionary science that propels humanity farther than ever before,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “Congratulations to the teams who made the world’s great engineering feats, the James Webb Space Telescope and the Mars Curiosity Rover, a reality. Through their work, distant galaxies feel closer, and the red sands of Mars are more familiar, as they expanded and redefined the bounds of human achievement in the cosmos for the benefit of all.”

Decades in the making and operating a million miles from Earth, Webb is the most powerful space telescope ever built, giving humanity breathtaking views of newborn stars, distant galaxies, and even planets orbiting other stars. The new technologies developed to enable Webb’s science goals – from optics to detectors to thermal control systems – now also touch Americans’ everyday lives, improving manufacturing for everything from high-end cameras and contact lenses to advanced semiconductors and inspections of aircraft engine components.

Measuring how materials hotter than the sun’s surface conduct electricity

Warm dense matter is a state of matter that forms at extreme temperatures and pressures, like those found at the center of most stars and many planets, including Earth. It also plays a role in the generation of Earth’s magnetic field and in the process of nuclear fusion.

Although warm dense matter is found all over the universe, researchers don’t have many good theories to describe the physics of materials under those conditions. Measurements of a material’s electrical conductivity would help test and refine models of warm dense matter. However, classic probes for such measurements require contact with the material. These can’t be used because materials in a warm dense matter state are very hot, often as hot or even hotter than the surface of the sun. Consequently, information about the electrical conductivity has so far been inferred indirectly.

In other words, without direct measurements, “there’s a lot of stuff in the universe happening that we as physicists are still struggling to understand,” said Ben Ofori-Okai, assistant professor at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University and a researcher at the Stanford PULSE Institute.

New moonquake discovery could change NASA’s Moon plans

Moonquakes shook Apollo 17’s landing zone—and they could challenge the safety of future lunar outposts. Scientists have discovered that moonquakes, not meteoroids, are responsible for shifting terrain near the Apollo 17 landing site. Their analysis points to a still-active fault that has been generating quakes for millions of years. While the danger to short missions is low, long-term lunar bases could face increasing risk. The findings urge future planners to avoid building near scarps and to prioritize new seismic instruments.

A recently published study reports that shaking from moonquakes, rather than impacts from meteoroids, was the main force behind the shifting terrain in the Taurus-Littrow valley, the site where Apollo 17 astronauts landed in 1972. The researchers also identified a likely explanation for the changing surface features and evaluated potential damage by applying updated models of lunar seismic activity — results that could influence how future missions and long-term settlements are planned on the moon.

The work, conducted by Smithsonian Senior Scientist Emeritus Thomas R. Watters and University of Maryland Associate Professor of Geology Nicholas Schmerr, appeared in the journal Science Advances.

Comet 3I/ATLAS: Europa Clipper captures rare ultraviolet view

The Southwest Research Institute-led Ultraviolet Spectrograph (UVS) aboard NASA’s Europa Clipper spacecraft has made valuable observations of the interstellar comet 3I/ATLAS, which in July became the third officially recognized interstellar object to cross into our solar system. UVS had a unique view of the object during a period when Mars- and Earth-based observations were impractical or impossible.

/* */