Archive for the ‘cosmology’ category

Mar 24, 2017

Gravitational waves pushing a supermassive black hole around its galaxy at about 8 million km/h

Posted by in categories: cosmology, physics

Meanwhile, the Hubble image offered a clue about what dislodged the black hole from its galaxy’s centre. The host galaxy bore faint, arc-shaped features called tidal tales, which are produced by the gravitational tug-of-war that takes place when two galaxies collide. This suggested that galaxy 3C 186 had recently merged with another system, and perhaps their black holes merged too.

What happened next, scientists can only theorize. Chiaberge and his colleagues suggest that as the galaxies collided, their black holes began to circle each other, flinging out gravity waves “like water from a lawn sprinkler,” as NASA described it. If the black holes had unequal masses and spin rates, they might have sent more gravitational waves in one direction than the other. When the collision was complete, the newly merged black hole would have then recoiled from the strongest gravitational waves, shooting off in the opposite direction.

“This asymmetry depends on properties such as the mass and the relative orientation of the back holes’ rotation axes before the merger,” Colin Norman of STScI and Johns Hopkins University, a co-author on the paper, said in the NASA news release. “That’s why these objects are so rare.”

Continue reading “Gravitational waves pushing a supermassive black hole around its galaxy at about 8 million km/h” »

Mar 24, 2017

Theoretical Physicists Suggest There’s a Portal Linking the Standard Model to Dark Physics

Posted by in categories: cosmology, particle physics, quantum physics, space travel

Theoretical physicists have put forward a new hypothesis that aims to connect the world of visible physics to the hidden forces of our Universe: what if there’s a portal that bridges the gap between the standard model to dark matter and dark energy?

The idea is that the reason we struggle to understand things such as dark matter and dark energy isn’t because they don’t exist — it’s because we’ve been oblivious to a portal through which regular particles and these ‘dark particles’ interact. And it’s something that could be tested experimentally.

The idea of portals in the Universe might sound pretty crazy, but let’s be clear for a second: we’re talking portals on the quantum, teeny-tiny scale here — nothing that you could drive a spacecraft through.

Continue reading “Theoretical Physicists Suggest There’s a Portal Linking the Standard Model to Dark Physics” »

Mar 23, 2017

Gravitational wave kicks monster black hole out of galactic core

Posted by in categories: cosmology, habitats, physics

Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.

Though there have been several other suspected, similarly booted black holes elsewhere, none has been confirmed so far. Astronomers think this object, detected by NASA’s Hubble Space Telescope, is a very strong case. Weighing more than 1 billion suns, the rogue black hole is the most massive black hole ever detected to have been kicked out of its central home.

Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.

Continue reading “Gravitational wave kicks monster black hole out of galactic core” »

Mar 22, 2017

Breaking the Supermassive Black Hole Speed limit

Posted by in categories: computing, cosmology

A new computer simulation helps explain the existence of puzzling supermassive black holes observed in the early universe. The simulation is based on a computer code used to understand the coupling of radiation and certain materials. “Supermassive black holes have a speed limit that governs how fast and how large they can grow,” said Joseph Smidt of the Theoretical Design Division at Los Alamos National Laboratory, “The relatively recent discovery of supermassive black holes in the early development of the universe raised a fundamental question, how did they get so big so fast?”

Using computer codes developed at Los Alamos for modeling the interaction of matter and radiation related to the Lab’s stockpile stewardship mission, Smidt and colleagues created a simulation of collapsing stars that resulted in supermassive black holes forming in less time than expected, cosmologically speaking, in the first billion years of the universe. “It turns out that while supermassive black holes have a growth speed limit, certain types of massive stars do not,” said Smidt. “We asked, what if we could find a place where stars could grow much faster, perhaps to the size of many thousands of suns; could they form supermassive black holes in less time?” A video about the discovery:

Read more

Mar 22, 2017

A Bizarre Physics Law Is Making Superfluid Helium Behave Like an Actual Black Hole

Posted by in categories: cosmology, law, quantum physics

Of all the laws of physics, this is arguably one of the strangest — scientists have discovered that the forces controlling the behaviour of a black hole’s event horizon are also at play in superfluid helium, an extraordinary liquid that flows without friction.

This entanglement area law has now been observed at both the vast scale of black holes and the atomic scale of cold helium, and could be the key to finally establishing the long sought-after quantum theory of gravity — the solution to one of the deepest problems in theoretical physics today.

Continue reading “A Bizarre Physics Law Is Making Superfluid Helium Behave Like an Actual Black Hole” »

Mar 21, 2017

Law Controlling Bizarre Behavior of Black Holes –“Points to a Deeper Understanding of Realty”

Posted by in categories: cosmology, law, particle physics

A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space—is also true for cold helium atoms that can be studied in laboratories. “It’s called an entanglement area law,” says Adrian Del Maestro, a physicist at the University of Vermont who co-led the research. That this law appears at both the vast scale of outer space and at the tiny scale of atoms, “is weird,” Del Maestro says, “and it points to a deeper understanding of reality.”

Read more

Mar 19, 2017

Why String Theory Could Be the Key to Uncovering the ‘Theory of Everything’

Posted by in categories: cosmology, quantum physics

A central goal that modern physicists share is finding a single theory that can explain the entire Universe and unite the forces of nature.

The standard model, for example, leaves dark matter, dark energy, and even gravity out of the picture — meaning that it really only accounts for a very small percentage of what makes up the Universe.

Continue reading “Why String Theory Could Be the Key to Uncovering the ‘Theory of Everything’” »

Mar 13, 2017

Scientist finds entanglement instantly gives rise to a wormhole

Posted by in categories: cosmology, particle physics, quantum physics

Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics – so strange, in fact, that Albert Einstein famously referred to it as “spooky action at a distance.”

Essentially, entanglement involves two particles, each occupying multiple states at once – a condition referred to as superposition. For example, both particles may simultaneously spin clockwise and counterclockwise. But neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state.

The resulting correlations between the particles are preserved, even if they reside on opposite ends of the universe.

Continue reading “Scientist finds entanglement instantly gives rise to a wormhole” »

Mar 11, 2017

Supermassive Black Holes might Be Hiding Entire Universes Inside

Posted by in category: cosmology

Bubbles of space-time cropped up during the early stages of our cosmos, ultimately forming black holes that were connected to us by wormholes according to a new theory. Research displays that these bubbles ultimately lost energy, and collapsed into a black hole that was so big, it produced its own universe inside – linked to us by the secret door.

These wormholes would have been very short-lived – no more than fractions of a second. During that time, our universe would have been linked to a vast multiverse – loads of other universes. Andrei Linde told New Scientist: “This subject is actually, really deep. We are just starting to touch the surface and find new things about the multiverse.”

Read more

Mar 9, 2017

Scientists May Have Solved the Biggest Mystery of the Big Bang

Posted by in categories: cosmology, particle physics

The European Council for Nuclear Research (CERN) works to help us better understand what comprises the fabric of our universe. At this French association, engineers and physicists use particle accelerators and detectors to gain insight into the fundamental properties of matter and the laws of nature. Now, CERN scientists may have found an answer to one of the most pressing mysteries in the Standard Model of Physics, and their research can be found in Nature Physics.

According to the Big Bang Theory, the universe began with the production of equal amounts of matter and antimatter. Since matter and antimatter cancel each other out, releasing light as they destroy each other, only a minuscule number of particles (mostly just radiation) should exist in the universe. But, clearly, we have more than just a few particles in our universe. So, what is the missing piece? Why is the amount of matter and the amount of antimatter so unbalanced?

Continue reading “Scientists May Have Solved the Biggest Mystery of the Big Bang” »

Page 1 of 3812345678Last