Toggle light / dark theme

Using NASA’s Chandra X-ray observatory, astronomers have observed a massive and hot galaxy cluster known as PLCKG287.0+32.9 (or PLCKG287 for short). Results of the observational campaign, presented March 17 on the arXiv pre-print server, deliver important insights into the morphological and thermodynamical properties of this cluster.

Galaxy clusters contain up to thousands of galaxies bound together by gravity. They generally form as a result of mergers and grow by accreting sub-clusters. These processes provide an excellent opportunity to study matter in conditions that cannot be explored in laboratories on Earth. In particular, merging could help us better understand the physics of shock and cold fronts seen in the diffuse intra-cluster medium, the cosmic ray acceleration in clusters, and the self-interaction properties of dark matter.

PLCKG287, also known as PSZ2 G286.98+32.90, is a galaxy cluster at a redshift of 0.38, with a mass of about 1.37 quadrillion solar masses and a temperature of 13 keV. The cluster has an X-ray luminosity in the 2–10 keV band at a level of 1.7 quattuordecillion erg/s.

On March 24, at the annual Rencontres de Moriond conference taking place in La Thuile, Italy, the LHCb collaboration at CERN reported a new milestone in our understanding of the subtle yet profound differences between matter and antimatter.

In its analysis of large quantities of data produced by the Large Hadron Collider (LHC), the international team found overwhelming evidence that particles known as baryons, such as the protons and neutrons that make up , are subject to a mirror-like asymmetry in nature’s fundamental laws that causes matter and antimatter to behave differently.

The discovery provides new ways to address why the that make up matter fall into the neat patterns described by the Standard Model of particle physics, and to explore why matter apparently prevailed over antimatter after the Big Bang. The paper is available on the arXiv preprint server.

There remain many questions — how precisely to test prime resonance coupling in the lab, how to formalize “consciousness” in a rigorous physical sense, and how to harness these insights for breakthrough technologies.

Yet the potential is vast. Non-local communication, quantum AI, and a bold reinterpretation of black holes as ultimate observers challenge us to delve deeper and rethink old assumptions.

The journey forward will require experiments that push the boundaries of quantum measurement, investigate subtle anomalies in tunneling and interference, and refine our understanding of how consciousness might operate as an entropic conductor.

Deep in the galaxy’s central molecular zone (CMZ), surrounding the supermassive black hole at the Milky Way’s center, clouds of dust and gas swirl amid energetic shock waves.

Now, a collaboration of international astronomers – using the Atacama Large Millimeter/submillimeter Array (ALMA) – has greatly sharpened our view of these processes by a factor of 100.

The team has uncovered an unexpected class of long, narrow filaments within this turbulent region, giving fresh insight into the cyclical formation and destruction of material in the CMZ.

A pair of studies describing the findings also confirm the standard model of cosmology and offer compelling findings regarding the cosmological conundrum known as the Hubble Tension. The researchers also spotted light from several other sources, resulting in a virtual cosmic road map from the present to the beginning of time.

“We can see right back through cosmic history,” said Jo Dunkley, the Joseph Henry Professor of Physics and Astrophysical Sciences at Princeton University and the ACT analysis leader, in an announcement, “from our own Milky Way, out past distant galaxies hosting vast black holes, and huge galaxy clusters, all the way to that time of infancy.”

The new data from the ACT builds on several previous studies, including a time-traveling video from NASA’s James Webb Space Telescope, examining the early universe after the Big Bang when time reportedly moved five times slower than today. One study even proposed a second event called a “dark Big Bang” to explain lingering cosmic mysteries.

Time travel has long fascinated scientists and theorists, prompting questions about whether the future can send visitors into its own past and whether individuals could move forward in time in ways that bypass the normal flows of daily life. The general idea of time as a fourth dimension, comparable to spatial dimensions, gained traction when Hermann Minkowski famously stated that “space by itself, and time by itself, are doomed to fade away into mere shadows” (Minkowski, 1908, p. 75). This integrated view of spacetime underlies many physics-based theories of how a traveler might move along the temporal axis.

In relativity, closed timelike curves (CTCs) theoretically allow a path through spacetime that loops back to its origin in time. As Kip Thorne put it, “wormhole physics is at the very forefront of our understanding of the Universe” (Thorne, 1994, pp. 496–497). A wormhole with suitable geometry might permit travel from one point in time to another. However, such scenarios raise paradoxes. One common example is the “grandfather paradox,” which asks how a traveler could exist if they venture into the past and eliminate their own ancestor. David Deutsch offered one possible resolution by suggesting that “quantum mechanics may remove or soften the paradoxes conventionally associated with time travel” (Deutsch, 1991, p. 3198). His reasoning rests on the idea that quantum behavior might allow timelines to branch or otherwise circumvent contradictions.

An international team of researchers used multi-wavelength observations of active galactic nuclei to study how black holes launch relativistic jets. The sixteen sources were observed with the Event Horizon Telescope during its first campaign in 2017. The extreme resolution achieved by the Event Horizon Telescope enabled studies of jets closer than ever to the central supermassive black holes of these galaxies.

The team investigated the acceleration and magnetization of the jets by comparing results obtained at various frequencies and angular scales. The work was led by scientists from the MPIfR in Bonn, Germany, and the IAA-CSIC in Granada, Spain, and is now published in Astronomy & Astrophysics.

To assess the accuracy in understanding the evolution of jets in the centers of active galaxies with supermassive black holes, an international research team led by Jan Röder (MPIfR and IAA-CSIC) compared observations made with the Event Horizon Telescope with previous studies using the Very Long Baseline Array and the Global Millimeter VLBI Array, which probe much larger spatial scales.