Toggle light / dark theme

Tiny nanoparticles conquer the big three in polymer glasses: Strength, toughness and processability

Scientists have found a nanoparticle-inspired solution to the age-old strength issue of polymer glasses. Seasoning the polymer glass recipe with single-chain nanoparticles, which are tiny, folded-up polymer strands, can make the glass stronger, tougher, and easier to process by acting as reinforcements.

In a study published in Physical Review Letters, researchers from China overcame these issues by using nanoparticles made from balled-up single-chain polymers (SCNPs). According to the researchers, their approach opens a new pathway for creating advanced polymer glasses that combine strength, , and processability in ways previously thought to be incompatible.

Polymer glass, also known as plexiglass, is widely used for making eyeglasses and enclosures for aquariums and museums. For decades, researchers have been seeking ways to enhance the mechanical properties of plexiglass, with a primary focus on improving its strength and toughness.

Materialism and Consciousness: The Case of Philosophical Zombies David Chalmers

This is one of the Royal Institute of Philosophy’s 15-minute Philosophy Briefings, a series in which eminent philosophers provide their own view of a key philosophical topic, in straightforward and accessible language.

Each one is designed to be a resource for anyone who wants to know more about these questions, whether you are covering them at A-level, teaching them at A-level, studying Philosophy at university, or are simply curious to know more.

David Chalmers, Professor of Philosophy and Neural Science at New York University and co-director of NYU’s Center for Mind, Brain, and Consciousness, looks at whether there exist philosophical zombies.

A Systematic Review of the Use of AI in EFL and EL Classrooms for Gifted Students

There is a growing body of literature that focuses on the applicability of artificial intelligence (AI) in English as a Foreign Language (EFL) and English Language (EL) classrooms; however, educational application of AI in the EFL and EL classroom for gifted students presents a new paradigm. This paper explores the existing research to highlight current practices and future possibilities of AI for teaching EFL and EL to address gifted students’ special needs. In general, the uses of AI are being established for class instruction and intervention; nevertheless, there is still uncertainty about practitioner use of AI with gifted students in EFL and EL classrooms. This review identifies 42 examples of GenAI Models that can be used in gifted EFL and EL classrooms.

Professor Dragan Primorac, MD, PhD — Shaping The Future Of Personalized Medicine

Shaping The Future Of Personalized Medicine — Professor Dragan[ ](https://www.facebook.com/PrimoracDragan?__cft__[0]=AZWpslTHjsy1a1kjedsti2RJw9yv6FhOXDFg2kyiufa2-D4Gk8TYoTy6HPaDPGARaq1EESF8mpBiV9Jjt2gpkh8Np3gpvzqTNu4cOTW-m31Hn4MVmEFyC6gnP5_-bMEdn1Gn81MUYh3llD5MqtPqF8dPWOZxq1Oo7MbC2g5664Of2FI4tc98YxJrFewUmig_tH0&__tn__=-]K-R)Primorac MD, PhD — Founder, St. Catherine Specialty Hospital


Professor Dragan Primorac, MD., PhD (https://www.draganprimorac.com/) is a globally recognized physician-scientist whose work spans personalized medicine, regenerative therapies, and forensic genetics.

From 2003 to 2009 Prof. Primorac served as the Minister of Science, Education and Sports of the Republic of Croatia. The Ministry of Science and Education of Croatia is the ministry in the Government of Croatia which is in charge of primary, secondary and tertiary education, research institutions and sports (https://mzom.gov.hr/en).

Prof. Primorac is the Founder of St. Catherine Specialty Hospital in Zagreb Croatia (https://www.stcatherine.com/), the official hospital of the Croatian Olympic Committee as well as the official hospital of the Croatian Football Federation. St. Catherine Hospital is affiliated with four medical schools and the Ministry of Science and Education recently announced that the St. Catherine Hospital became Scientific Center of Excellence for the Personalized Medicine\.

Healthy Habits Can Make Your Brain Up to 8 Years Younger

Stressful factors like chronic pain, low income, less education and other social risks were associated with older-looking brains. Those links seemed to make less of an impression over time. What stood out more clearly were protective elements: things like getting restorative sleep, maintaining a healthy weight, managing stress, avoiding tobacco and having supportive relationships.

Study participants who reported the most protective factors had brains eight years younger than their chronological age when the study started, and their brains went on to age more slowly over the next two years.

Quantum Photonics“ data-next-head=”

✌️ Website 💡 www.quantumphotonics.club.
✌️ Twitter 💡@qpclub1
✌️ Instagram💡@qphotonics.
✌️ Founder 💡Sierra @sierra_photon.
✌️ Email 💡 [email protected].
✌️ Birth 💡04/24/2021

❤️A 501c educational non-profit organization to promote STEMM equalities and tech diversities via educational sessions to the public, especially those from underserved and underrepresented populations to include women, black, veterans, low-income groups, people with disabilities etc.

❤️EIN: 87–4120490

Largest genetic study to date identifies 13 new DNA regions linked to dyslexia

Dyslexia is a neurodevelopmental condition estimated to affect between 5–10% of people living in most countries, irrespective of their educational and cultural background. Dyslexic individuals experience persistent difficulties with reading and writing, often struggling to identify words and spell them correctly.

Past studies with twins suggest that is in great part heritable, meaning that its emergence is partly influenced by inherited from parents and grandparents. However, the exact genetic variants (i.e., small differences in DNA sequences) linked to dyslexia have not yet been clearly delineated.

Researchers at University of Edinburgh, the Max Planck Institute for Psycholinguistics and various other institutes recently carried out the largest genome-wide association study to date exploring the genetic underpinnings of dyslexia. Their paper, published in Translational Psychiatry, identifies several previously unknown genetic loci that were found to be linked to an increased likelihood of experiencing dyslexia.

Space Habitat Clusters & Conglomerations

Space isn’t just for lonely colonies—it’s for communities. Join us as we imagine constellations of space habitats bound by tethers, trade, and trust, building not just homes in the stars but entire civilizations.

Watch my exclusive video The Economics of Immortality: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Space Habitat Clusters & Conglomerations.
Written, Produced & Narrated by: Isaac Arthur.
Graphics: Jarred Eagley, Jeremy Jozwik, Udo Schroeter.
Select imagery/video supplied by Getty Images.
Music Courtesy of Stellardrone and Epidemic Sound http://epidemicsound.com/creator.

Chapters.
0:00 Intro.
1:13 Why Clustered Habitats?
6:00 Habitat Types and Roles Within Clusters.
9:41 Mobility and Modularity – The Politics of Moveable Worlds.
14:02 Tethers, Transit, and Shared Infrastructure.
17:35 Shapes of Clusters and Dynamic Conglomerations.
23:43 Nebula.
25:21 Digital Ecosystems and Cultural Identity.
25:19 Economics and Trade in Habitat Constellations.
26:52 Education and Intergenerational Planning.
28:17 Security and Conflict Management.
29:10 A Tale of Unity.
32:29 Religion, Ritual, and Meaning.
33:19 The Long View: Legacy and Civilization.
34:07 Closing Reflections

Lack of soap most reported barrier to effective hand hygiene in shared community spaces

A lack of soap is the most often reported barrier to effective hand hygiene—key to curbing the spread of infection—in shared community spaces, such as households, schools, and public places, finds a systematic review of the available research, published in the open access journal BMJ Global Health.

It found that the barriers most often reported concerned physical opportunity, such as the availability of soap, and lack of motivation— not prioritized, or not habitual practice, for example. On the other hand, the enablers most often reported being aligned with motivation in the form of habitual practice and perceived health risk.

A further systematic review found that most of the reported efforts to improve handwashing didn’t always address identified barriers or enablers to ensure behavioral sustainability, nor did they fully consider the fundamental resources needed for hand hygiene, such as soap, water, and handwashing facilities.

Smells interpreted as taste!

When we eat or drink, we don’t just experience taste, but rather a ‘flavor’. This taste experience arises from a combination of taste and smell, where aromas from food reach the nose via the oral cavity, known as retronasal odor. Researchers have now shown that the brain integrates these signals earlier than previously thought – already in the insula, a brain region known as the taste cortex – before the signals reach the frontal cortex, which controls our emotions and behavior.

“We saw that the taste cortex reacts to taste-associated aromas as if they were real tastes,” explains the lead author. “The finding provides a possible explanation for why we sometimes experience taste from smell alone, for example in flavored waters. This underscores how strongly odors and tastes work together to make food pleasurable, potentially inducing craving and encouraging overeating of certain foods.”

The study involved 25 healthy adults who were first taught to recognize both a sweet taste and a savory taste through combinations of taste and smell. This was followed by two brain imaging sessions using functional magnetic resonance imaging (fMRI), in which the participants were given either a tasteless aroma or a taste without smell. The researchers trained an algorithm to recognize patterns in brain activity for sweet and savory tastes, and then tested whether the same patterns could be identified when the participants were only given aromas.

/* */