Toggle light / dark theme

New haptic technology adds the sense of touch to virtual reality

USC scientists have developed a wearable system that enables more natural and emotionally engaging interactions in shared digital spaces, opening new possibilities for remote work, education, health care and beyond.

Touch plays a vital role in how humans communicate and bond. From infancy through adulthood, physical contact helps foster emotional bonds, build trust and regulate stress. Yet in today’s increasingly digital world, where screens mediate many of our relationships, it is often missing.

To bridge the gap, researchers at the USC Viterbi School of Engineering have developed a wearable haptic system that lets users exchange physical gestures in and feel them in real time, even when they’re miles apart. Their paper is published on the arXiv preprint server.

GENETIC ENGINEERING, a Journey into the Future

This is a sci-fi documentary looking at the future of genetic engineering and how it applies to space exploration, astronauts, terraforming planets and even Earth.

What is DNA, and how can it be engineered. What is CRISPR, and the future technology used in genetic engineering and biotechnology.

Personal inspiration in creating this video came from: Jurassic Park (the book), and The Expanse TV show (the protomolecule).

Other topics in the video include: how genetic engineering can change food allergies, cryosleep astronauts using hibernation biology borrowed from bears, squirrels and hedgehogs, engineering plants for terraforming other planets, and entries from The Encyclopedia of the Future.

PATREON
The third volume of ‘The Encyclopedia of the Future’ is now available on my Patreon.

Visit my Patreon here: https://www.patreon.com/venturecity.

Earth and Space for Educators

This FREE features Inspiration4 astronaut Chris Sembroski and educator Erin Duncan-Sembroski, along with your hosts, planetary scientist Dr. Kirby Runyon and space educator Dr. Mark Wagner. The high-energy one-hour session is focused on providing an overview of the three-day Earth and Space Experience coming up on November 7–9, 2025. Register now to learn about the geology at specific locations in Southern New Mexico, and how these sites are analogs for the Moon, Mars, and elsewhere in the solar system. Time is also allocated for a Q&A opportunity with all four speakers… come ready with questions! Participation in this also includes access to free space education resources that you can take back to share with your students or others in your community.

Note: This is appropriate for educators, industry professionals, and space enthusiasts from all walks of life. Space education is for everyone!

Chris “Hanks” Sembroski is a commercial astronaut, U.S. Air Force veteran, and passionate advocate for space exploration and STEM education. Best known for his role as Mission Specialist on the historic Inspiration4 mission in 2021, Sembroski spent three days in space, completing 47 orbits as part of the first all-civilian crew. With degrees in aeronautics and a career dedicated to advancing aerospace innovation, he has contributed to groundbreaking projects like Blue Origin’s New Glenn program and teaches as an adjunct faculty member at Embry-Riddle Aeronautical University. Chris’s journey reflects a lifelong passion for human spaceflight, from launching model rockets in college, leading teams through simulated missions at U.S. Space Camp, to advocating for space policy in Washington, D.C. He continues to inspire the next generation through his work as a speaker, educator, and industry leader, embodying the spirit of generosity and exploration.

Tesla’s Biggest FSD Problem Isn’t Technical

Questions to inspire discussion.

Marketing and Promotion.

📣 Q: What marketing strategies should Tesla employ to promote FSD? A: Tesla should invest in advertising, highlighting the cost-effectiveness of their vehicles, and invite influencers and press for a special day to meet the AI team and spread the word about FSD.

Technical Advancements.

🧠 Q: What future improvements are planned for Tesla’s FSD? A: Tesla plans to expand FSD capabilities with 10x parameters in future iterations, making it an even more valuable feature and key brand differentiator.

Safety Benefits.

Want to boost your brain as you age? Music might be the answer

Long-term musical training may mitigate the age-related decline in speech perception by enhancing cognitive reserve, according to a study published in PLOS Biology by Claude Alain from the Baycrest Academy for Research and Education, Canada, and Yi Du from the Chinese Academy of Sciences.

Normal aging is typically associated with declines in sensory and cognitive functions. These age-related changes in perception and cognition are often accompanied by increased neural activity and functional connectivity—the statistical dependence of activity between different brain regions—in widely distributed neural networks.

The recruitment of neural activity and strengthening of functional connectivity are thought to reflect a compensatory strategy employed by older adults to maintain optimal cognitive performance.

Approach improves how new skills are taught to large language models

Researchers have developed a technique that significantly improves the performance of large language models without increasing the computational power necessary to fine-tune the models. The researchers demonstrated that their technique improves the performance of these models over previous techniques in tasks including commonsense reasoning, arithmetic reasoning, instruction following, code generation, and visual recognition.

Large language models are artificial intelligence systems that are pretrained on huge data sets. After pretraining, these models predict which words should follow each other in order to respond to user queries. However, the nonspecific nature of pretraining means that there is ample room for improvement with these models when the user queries are focused on specific topics, such as when a user requests the model to answer a math question or to write computer code.

“In order to improve a model’s ability to perform more specific tasks, you need to fine-tune the model,” says Tianfu Wu, co-corresponding author of a paper on the work and an associate professor of computer engineering at North Carolina State University.

How an MIT professor introduced hundreds of thousands of students to neuroscience

From the very beginning, MIT Professor Mark Bear’s philosophy for the textbook “Neuroscience: Exploring the Brain” was to provide an accessible and exciting introduction to the field while still giving undergraduates a rigorous scientific foundation. In the 30 years since its first print printing in 1995, the treasured 975-page tome has gone on to become the leading introductory neuroscience textbook, reaching hundreds of thousands of students at hundreds of universities around the world.

“We strive to present the hard science without making the science hard,” says Bear, the Picower Professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences at MIT. The fifth edition of the textbook is out today from the publisher Jones & Bartlett Learning.

Bear says the book is conceived, written, and illustrated to instill students with the state of knowledge in the field without assuming prior sophistication in science. When he first started writing it in the late 1980s — in an effort soon joined by his co-authors and former Brown University colleagues Barry Connors and Michael Paradiso — there simply were no undergraduate neuroscience textbooks. Up until then, first as a graduate teaching assistant and then as a young professor, Bear taught Brown’s pioneering introductory neuroscience class with a spiral-bound stack of photocopied studies and other scrounged readings.

Maxwell–Boltzmann distribution generalized to real gases

The Maxwell–Boltzmann distribution describes the probability distribution of molecular speeds in a sample of an ideal gas. Introduced over 150 years ago, it is based on the work of Scottish physicist and mathematician James Clerk Maxwell (1831–1879) and Austrian mathematician and theoretical physicist Ludwig Boltzmann (1844–1906).

Today, the distribution and its implications are commonly taught to undergraduate students in chemistry and physics, particularly in introductory courses on or statistical mechanics.

In a recent theoretical paper, I introduced a novel formula that extends this well-known distribution to real gases.

/* */