Russia, and US are also in the race for developing more and more advanced hypersonic speed capable weapons and aircraft.
Category: transportation
Enthusiasts have been pushing the limits of silicon for as long as microprocessors have existed. Early overclocking endeavors involved soldering and replacing crystal clock oscillators, but that practice quickly evolved into adjusting system bus speeds using motherboard DIP switches and jumpers.
Internal clock multipliers were eventually introduced, but it didn’t take long for those to be locked down, as unscrupulous sellers began removing official frequency ratings and rebranding chips with their own faster markings. System buses and dividers became the primary tuning tools for most users, while ultra-enthusiasts went further – physically altering electrical specifications through hard modding.
Eventually, unlocked multipliers made a comeback, ushering in an era defined by BIOS-level overclocking and increasingly sophisticated software tuning tools. Over the past decade, however, traditional overclocking has become more constrained. Improved factory binning, aggressive turbo boost algorithms, and thermal ceilings mean that modern CPUs often operate near their peak potential right out of the box.
More than a century before Teslas hit the road, battery-powered taxicabs zipped silently through the streets of Manhattan.
Kawasaki Unveils Japan’s Future of Transport | #breakingnews #Robotics.
🚨 Japan’s Kawasaki has unveiled a groundbreaking concept robot called CORLEO that could revolutionize future transport.
🔹 Designed to resemble a lion for navigating rough and mountainous terrains.
🔹 Powered by a hydrogen engine—eco-friendly innovation.
🔹 Controlled by shifting body weight, similar to horseback riding.
🔹 A bold step into the future of personal robotic transport.
📢 Keywords:
Kawasaki CORLEO robot, Japan transport robot, hydrogen-powered robot, robotic lion vehicle, futuristic mobility, mountain transport robot, robotics innovation Japan.
📢 Hashtags:
#ThriveNews #Japan #Robotics #Kawasaki #CORLEO #FutureTransport #Innovation #TechNews #HydrogenPower
Research teams have established a theoretical method for designing smooth curved wall surfaces with variable cross-section shock tubes, and developed an integrated, high-intensity multifunctional shock tube device. Led by Prof. Luo Xisheng and Prof. Si Ting from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), the study was published in Review of Scientific Instruments.
Based on the device and techniques, the research team further developed a discontinuous perturbation interface generation technology, pioneering the experimental and mechanistic study of strong shock wave impact on single-mode fluid interface instability in shock tubes. The results were published in the Journal of Fluid Mechanics.
Shock wave-induced fluid interface instability is a common key scientific issue in aerospace vehicles and inertial confinement nuclear fusion, while the related basic theories are still insufficient. Shock tubes are often employed to carry out basic aerodynamics research. However, the controllable generation of regularly-shaped, high-energy utilization converging shock waves and strong shock waves still remains a challenge.
Volvo’s hydrogen-powered engine trucks are reshaping transportation with clean energy solutions. Discover how hydrogen is driving a greener, efficient future.
An often-spouted complaint about public infrastructure projects is how long they take to complete. California High-Speed Rail, a perennial punching bag, is slated to get its initial operating segment running by 2031 at the earliest. A recent project in Japan flipped that notion on its head. The West Japan Railway Company, also known as JR West, replaced an entire station with 3D-printed prefabricated pieces in under three hours last week. The company also claims the construction costs were half that of reinforced concrete.
JR West used this new construction method to replace Hatsushima Station, a small wooden station built in 1949 and served less than 400 passengers per day. The company waited for an overnight lull in the schedule, then quickly sent its workers into action. The new station was pieced together with four hallow 3D-printed mortar pieces, according to the Japan Times. At the work site, the pieces were filled with rebar and concrete to provide the same earthquake resistance as traditionally built stations. Despite the blazing fast construction time, JR West aims to open the new station in July.
Tesla is now shipping the Full Self-Driving (FSD) (Supervised) Early Access Program to the USA. This is a big step forward in Tesla’s work to improve and project its autonomous driving technology. Tesla expects that the capability will eventually extend to all FSD owners in North America, letting them try out pre-release versions of the automaker’s most sophisticated automotive-driving-assistance software.
Enrolling in this program will allow Tesla owners to test out high-end upgrades before the rest of the public gains access. Most importantly, participants will offer useful info and vehicle data that will aid in refining and fine-tuning future versions.
The future of off-road adventure has arrived! The Kawasaki Corleo isn’t just another concept vehicle—it’s a revolutionary four-legged robotic riding machine…
In a jaw-dropping announcement that has sent shockwaves through the automotive and tech industries, Elon Musk has revealed that Tesla’s next-generation vehicles will feature an innovative new capability: the ability to chat with drivers. This game-changing feature will allow Tesla cars to interact with their owners through natural language, responding to commands, engaging in conversation, and even providing real-time assistance to drivers on the road. Musk’s revelation marks another leap forward in Tesla’s mission to redefine the future of transportation and push the boundaries of what cars can do.
The announcement comes on the heels of Tesla’s ongoing efforts to integrate artificial intelligence (AI) and advanced technology into its vehicles, further blurring the lines between traditional cars and cutting-edge, self-driving machines. With this new feature, Tesla is set to revolutionize the driving experience by introducing a level of interactivity and intelligence that has never been seen in a vehicle before.