Toggle light / dark theme

Aluminum alloys are well-known for their low weight and corrosion resistance, making them ideal candidates for applications in a low-carbon economy—from lightweight automobiles to tanks for storing green hydrogen. However, their widespread application is limited by a key challenge: they suffer from embrittlement leading to cracking and failure when exposed to hydrogen. Until now, alloys resistant to hydrogen embrittlement were rather soft, limiting their application in hydrogen-related technologies that require high strength.

Now, researchers from the Max Planck Institute for Sustainable Materials (MPI-SusMat) in Germany, together with partners from China and Japan, have developed a new alloy design strategy that overcomes this dilemma. Their approach enables both exceptional strength and superior resistance to hydrogen embrittlement (HE), paving the way for safer and more efficient aluminum components in the hydrogen economy. They have published their results in the journal Nature.

Recently, a research team achieved real-time tracking of electronic/magnetic structure evolution in Li-rich Mn-based materials during the initial cycling through the self-developed operando magnetism characterization device.

Their study, published in Advanced Materials, elucidated the critical mechanism underlying the oxygen reaction. The research team was led by Prof. Zhao Bangchuan from the Institute of Solid State Physics, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, in collaboration with Prof. Zhong Guohua from the Shenzhen Institute of Advanced Technology and Prof. Li Qiang from Qingdao University.

With the rise of electric vehicles and the low-altitude economy, the demand for high-energy-density batteries is growing. Li-rich Mn-based materials stand out due to their high capacity, wide voltage range, and .

As global demand for electric vehicles and renewable energy storage surges, so does the need for affordable and sustainable battery technologies. A new study has introduced an innovative solution that could impact electrochemical energy storage technologies.

The research is published in the journal Advanced Functional Materials. The work was led by researchers from the Department of Materials Science and NanoEngineering at Rice University, along with collaborators from Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram.

Using an oil and gas industry’s byproduct, the team worked with uniquely shaped —tiny cones and discs—with a pure graphitic structure. These unusual forms produced via scalable pyrolysis of hydrocarbons could help address a long-standing challenge for anodes in battery research: how to store energy with elements like sodium and potassium, which are far cheaper and more widely available than lithium.

We are ready to unveil the world’s first real-world speeder bike.
Stay tuned for the official launch video soon.

Subscribe and check out new videos.
#speederbike #hoverbike #starwars #jetpack #ironman #futuretech #flying #airbike #teaser.

https://twitter.com/Volonaut.
https://www.tiktok.com/@volonaut.
https://www.facebook.com/volonaut.
https://www.instagram.com/volonaut.
https://www.linkedin.com/company/volonaut/

Researchers have created a light-powered soft robot that can carry loads through the air along established tracks, similar to cable cars or aerial trams. The soft robot operates autonomously, can climb slopes at angles of up to 80 degrees, and can carry loads up to 12 times its weight.

“We’ve previously created soft robots that can move quickly through the water and across solid ground, but wanted to explore a design that can carry objects through the air across open space,” says Jie Yin, associate professor of mechanical and aerospace engineering at North Carolina State University and corresponding author of a paper on the work published in Advanced Science.

“The simplest way to do this is to follow an established track—similar to the aerial trams you see in the mountains. And we’ve now demonstrated that this is possible.”

At a time when we run ourselves ragged to meet society’s expectations of productivity, performance and time optimization, is it right that our robot vacuum cleaners and other smart appliances should sit idle for most of the day?

Computer scientists at the University of Bath in the UK think not. In a new paper, they propose over 100 ways to tap into the latent potential of our robotic devices. The researchers say these devices could be reprogrammed to perform helpful tasks around the home beyond their primary functions, keeping them physically active during their regular downtime.

New functions could include playing with the cat, watering plants, carrying groceries from car to kitchen, delivering breakfast in bed and closing windows when it rains.

A major breakthrough at POSTECH could dramatically boost AI speeds and device efficiency.

Researchers have, for the first time, decoded how Electrochemical Random-Access Memory (ECRAM) works, using a special technique to observe internal electron behavior even at extreme temperatures. This hidden mechanism, where oxygen vacancies act like shortcuts for electrons, could unlock faster AI systems and longer-lasting smartphones, laptops, and tablets.

Breakthrough at POSTECH: boosting AI efficiency.

According to the South Korean supplier, the system can extinguish fires at an early stage by releasing a suppressant within five minutes of initial ignition. This five-minute window is critical: current regulations in Europe, China, and India require that thermal runaway across the battery be delayed for at least five minutes after the first cell ignites, giving vehicle occupants enough time to safely exit the vehicle after a crash.

However, Hyundai Mobis says its new Battery System Assembly (BSA) was not merely designed to meet existing requirements, but rather in anticipation of stricter safety rules aimed at preventing any heat transfer between cells in the first place. The company believes such technologies will take centre stage in the next generation of battery systems on the global market.


Hyundai Mobis has unveiled a new battery system featuring an integrated fire extinguishing unit. It is designed to prevent heat from spreading to adjacent cells in the event of a malfunction, reducing the risk of larger thermal incidents.

By Carla Westerheide.