Toggle light / dark theme

Hydrogen is often seen as the fuel of the future on account of its zero-emission and high gravimetric energy density, meaning it stores more energy per unit of mass compared to gasoline. Its low volumetric density, however, means it takes up a large amount of space, posing challenges for efficient storage and transport.

In order to address these deficiencies, hydrogen must be compressed in tanks to 700-bar pressure, which is extremely high. This situation not only incurs but also raises safety concerns.

For hydrogen-powered fuel-cell vehicles (FCVs) to become widespread, the US Department of Energy (DOE) has set specific targets for : 6.5% of the storage material’s weight should be hydrogen (gravimetric storage capacity of 6.5 wt%), and one liter of storage material should hold 50 grams of hydrogen (a volumetric storage capacity of 50 g L‒1). These targets ensure that vehicles can travel reasonable distances without excessive fuel.

Unsubstituted π-electronic systems with expanded π-planes are highly desirable for improving charge-carrier transport in organic semiconductors. However, their poor solubility and high crystallinity pose major challenges in processing and assembly, despite their favorable electronic properties. The strategic arrangement of these molecular structures is crucial for achieving high-performance organic semiconductive materials.

In a significant breakthrough, a research team led by Professor Hiromitsu Maeda from Ritsumeikan University, including Associate Professor Yohei Haketa from Ritsumeikan University, Professor Shu Seki from Kyoto University, and Professor Go Watanabe from Kitasato University, has synthesized a novel organic electronic system incorporating gold (AuIII) and benzoporphyrin molecules, enabling enhanced solubility and conductivity.

The findings of the study were published online in Chemical Science.

We often never hear of many inventions, which is why Lifeboat is good at informing people.

Gregorio Zara (March 8, 1902–October 15, 1978) was a Filipino scientist best known as the inventor of the videophone, the first two-way electronic video communicator, in 1955. All told, he patented 30 devices. His other inventions ranged from an alcohol-powered airplane engine to a solar-powered water heater and stove.


Filipino scientist Gregorio Zara won 30 patents for his inventions, which included the first videophone and many breakthroughs in aeronautics.

BANGKOK (AP) — China’s energy and auto giant BYD has announced an ultra fast EV charging system that it says is nearly as quick as a fill up at the pumps.

BYD, China’s largest EV maker, said Monday that its flash-chargers can provide a full charge for its latest EVs within five to eight minutes, similar to the amount of time needed to fill a fuel tank. It plans to build more than 4,000 of the new charging stations across China.

Charging times and limited ranges have been a major factor constraining the switch from gas and diesel vehicles to EVs, though Chinese drivers have embraced that change, with sales of battery powered and hybrid vehicles jumping 40% last year.

Interconnected materials containing networks are ubiquitous in the world around us— rubber, car tires, human and engineered tissues, woven sheets and chain mail armor. Engineers often want these networks to be as strong as possible and to resist mechanical fracture and failure.

The key property that determines the strength of a network is its intrinsic fracture energy, the lowest energy required to propagate a crack through a unit area of the surface, with the bulk of the network falling apart. As examples, the intrinsic fracture energy of polymer networks is about 10 to 100 joules per square meter, 50–500 J/m2 for elastomers used in car tires, while spider silk has an intrinsic fracture energy of 150–200 J/m2.

Until now, there has been no way to calculate the intrinsic fracture energy (IFE) for a networked material, given the mechanical behavior and connectivity of its constituents.

The Nano Materials Research Division at the Korea Institute of Materials Science (KIMS), led by Dr. Tae-Hoon Kim and Dr. Jung-Goo Lee has successfully developed a grain boundary diffusion process that enables the fabrication of high-performance permanent magnets without the use of expensive heavy rare earth elements. This pioneering technology marks the world’s first achievement in this field.

The findings are published in Acta Materialia.

Permanent magnets are key components in various high-value-added products, including electric vehicle (EV) motors and robots. However, conventional permanent magnet manufacturing processes have been heavily dependent on heavy rare earth elements, which are exclusively produced by China, leading to high resource dependency and .

In a megascience-scale collaboration with French researchers from College de France and the University of Montpellier, Skoltech scientists have shown a much-publicized problem with next-generation lithium-ion batteries to have been induced by the very experiments that sought to investigate it. Published in Nature Materials, the team’s findings suggest that the issue of lithium-rich cathode material deterioration should be approached from a different angle, giving hope for more efficient lithium-ion batteries that would store some 30% more energy.

Efficient energy storage is critical for the transition to a low-carbon economy, whether in grid-scale applications, electric vehicles, or portable devices. Lithium-ion batteries remain the best-developed electrochemical storage technology and promise further improvements. In particular, next-generation batteries with so-called lithium-rich cathodes could store about one-third more energy than their state-of-the-art counterparts with cathodes made of lithium nickel manganese cobalt oxide, or NMC.

A key challenge hindering the commercialization of lithium-rich batteries is voltage fade and capacity drop. As the battery is repeatedly charged and discharged in the course of normal use, its cathode material undergoes degradation of unclear nature, causing gradual voltage and capacity loss. The problem is known to be associated with the reduction and oxidation of the in NMC, but the precise nature of this redox process is not understood. This theoretical gap undermines the attempts to overcome voltage fade and bring next-generation batteries to the market.

Fueling excitement, Tesla’s Cybercab was spotted navigating the expansive grounds of Gigafactory Texas autonomously. Tesla Cybercab, also labeled as the Robotaxi, was unveiled by CEO Elon Musk in October 2024, during the ‘We Robot’ event in California. The two-seat vehicle has no steering wheel or pedals – it represents Tesla’s end goal for a completely autonomous transportation network.

The Cybercab has butterfly doors that open automatically, a hatchback layout for the cargo room, and an inductive charging technique that eliminates the need for conventional charging ports. Tesla expects to start production of the Cybercabs before 2027, and the price is estimated at $30,000.

The Tesla CyberCab is an autonomous vehicle that Tesla plans to use in its upcoming ride-hailing system. The CyberCab represents its distinct vehicle type because it is specially designed without any human driver functionalities for enhanced efficiency combined with premium passenger comfort and an extended product life span.

A team of researchers led by Colorado State University graduate student Luke Wernert and Associate Professor Hua Chen has discovered a new kind of Hall effect that could enable more energy-efficient electronic devices.

Their findings, published in Physical Review Letters in collaboration with graduate student Bastián Pradenas and Professor Oleg Tchernyshyov at Johns Hopkins University, reveal a previously unknown Hall mass in complex magnets called noncollinear antiferromagnets.

The Hall effect—first discovered by Edwin Hall at Johns Hopkins in 1879—usually refers to electric current flowing sideways when exposed to an external magnetic field, creating a measurable voltage. This sideways flow underpins everything from vehicle speed sensors to phone motion detectors. But in the CSU team’s work, electrons’ spin (a tiny, intrinsic form of angular momentum) takes center stage instead of .