The largest genetic study of delirium shows that APOE ε4 increases delirium susceptibility even without dementia. Researchers identified shared risk loci with Alzheimer’s disease and blood proteins that predict delirium up to 16 years earlier.
This ‘fundamental’ study uncovers how directing pyruvate into mitochondria can shrink cells by shifting their metabolism away from building amino acids and proteins.
This fundamental work demonstrates that compartmentalized cellular metabolism is a dominant input into cell size control in a variety of mammalian cell types and in Drosophila. The authors show that increased pyruvate import into the mitochondria in liver-like cells and in primary hepatocytes drives gluconeogenesis but reduces cellular amino acid production, suppressing protein synthesis. The evidence supporting the conclusions is compelling, with a variety of genetic and pharmacologic assays rigorously testing each step of the proposed mechanism. This work will be of interest to cell biologists, physiologists, and researchers interested in cell metabolism, and is significant because stem cells and many cancers exhibit metabolic rewiring of pyruvate metabolism.
A new pill for treating dementia is delivering promising “topline” results in early-stage clinical trials, according to a recent press release by its makers.
The treatment, called VES001 after its developer Vesper Bio, is designed to tackle frontotemporal dementia (FTD) – the most common type of dementia in the under-60s.
In a two-part preliminary safety trial at two medical centres in the Netherlands and the UK, VES001 was given to people showing no signs of FTD, including six volunteers with an increased genetic risk for the condition.
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by differences in communication, behavior and the processing of sensory information. Past research has shown that some individuals diagnosed with ASD exhibit specific genetic variants or differences in the regulation of genes.
In some patients, the Shank3 gene was found to be mutated, partially or fully deleted, or not expressed as much. This gene is known to support the creation of junctions at which connected neurons communicate with each other, known as synapses.
Past findings suggest that people diagnosed with ASD who exhibit variants in Shank3 also present abnormalities in the volume, structure and function of white matter. White matter is a brain region filled with a fatty substance known as myelin, which insulates nerves and allows signals to travel faster within the nervous system.
Pulmonary fibrosis—also known in technical terms as idiopathic pulmonary fibrosis (IPF)—is a rare but life-threatening disease. It causes scarring of the connective tissue between the functional tissue of the lungs, leading to increasing shortness of breath. Current treatments can slow the progression of fibrosis, but cannot cure it. The average life expectancy after diagnosis is only four to six years. New therapies are therefore urgently needed.
A research team led by Professor Christian Bär, research group leader at the Institute for Molecular and Translational Therapy Strategies at Hannover Medical School (MHH), and his colleague Dr. Shambhabi Chatterjee has turned its attention to the interior of cells, or more precisely to telomeres. These are protective caps at the ends of chromosomes, the carriers of our genetic information.
With each cell division, the telomeres shorten a little until they reach a critical length and the genes they protect could be damaged. Then the cell stops dividing and the tissue ages.