Blog

Archive for the ‘genetics’ category

Aug 16, 2018

A way to get green revolution crops to be productive without needing so much nitrogen

Posted by in categories: bioengineering, food, genetics

A team of researchers from the Chinese Academy of Sciences, the Academy of Agriculture and Forestry Sciences in China and the University of Oxford in the U.K. has found a way to grow green revolution crops using less nitrogen with no reduction in yield. In their paper published in the journal Nature, the group describes their research efforts and the results they found when planting newly developed plant varieties. Fanmiao Wang and Makoto Matsuoka with Nagoya University offer a News & Views piece on the work done by the team in the same journal issue.

The green revolution was characterized by big increases in crop production in developing countries—it came about due to the increased use of pesticides, fertilizers and changes in crop varieties used. One of the changes to the crops came about as and wheat plants were bred to grow less tall to prevent damage from wind and rain. While this resulted in improved yields, it also resulted in the use of more nitrogen-based fertilizers, which are environmentally harmful. In this new effort, the researchers wondered if it might be possible to re-engineer green-revolution crop varieties in such a way as to restrict height and therefore retain high productivity, while also using nitrogen more efficiently.

Prior research had shown that proteins in the DELLA family reduced plant growth. Crop breeding in the 1960s led to varieties of rice and wheat with genetic mutations that allowed the proteins to build up in the plants, thus stunting their growth. Unfortunately, DELLA proteins have also been found to be the cause of inefficient nitrogen use in the same —as a result, farmers used more of it to increase yields. To overcome this problem, the researchers crossbred varieties of rice to learn more, and found that the transcription factor OsGRF4 was associated with nitrogen uptake. Using that information, they engineered some varieties of rice to express OsGRF4 at higher levels, which, when tested, showed higher uptake of nitrogen. The team then planted the varieties they had engineered and found that they required less nitrogen to produce the same yields—and they were just as stunted. They therefore claim that it is possible to grow that require less .

Continue reading “A way to get green revolution crops to be productive without needing so much nitrogen” »

Aug 14, 2018

The assembly line of the future: Automation, DNA construction, and synthetic biology

Posted by in categories: bioengineering, biotech/medical, economics, genetics, robotics/AI, sustainability

This story is brought to you by SynbiCITE, which is accelerating the commercialization of synthetic biology applications. To learn how SynbiCITE is nucleating a sustainable UK economy, visit www.synbicite.com.

Just as Henry Ford’s assembly line revolutionized the automobile industry, synthetic biology is being revolutionized by automated DNA assembly (see SynBioBetaLive! with Opentrons). The key features of an assembly line translate well into the field of synthetic biology – speed, accuracy, reproducibility and validation. Instead of welding chassis together, small robotic arms are lifting delicate plates holding dozens of samples, adding and removing miniscule amounts of fluid.

Continue reading “The assembly line of the future: Automation, DNA construction, and synthetic biology” »

Aug 14, 2018

The Hidden Dangers of Home DNA Tests

Posted by in categories: biotech/medical, business, genetics, health

Consumer DNA tests have taken off in popularity, promising to give you clues to your heritage and health. But after the test is done, who owns your personal genetic data? Bloomberg QuickTake explains why you should think twice before sending in that vial.

____

Continue reading “The Hidden Dangers of Home DNA Tests” »

Aug 11, 2018

The future of food: Scientists have found a fast and cheap way to edit your edibles’ DNA

Posted by in categories: biotech/medical, food, genetics

Oil without trans-fat? Wheat without gluten? Gene-editing technology can transform the food we eat. But are consumers on board?

Read more

Aug 9, 2018

Recording every cell’s history in real-time with evolving genetic barcodes

Posted by in categories: biological, genetics

All humans begin life as a single cell that divides repeatedly to form two, then four, then eight cells, all the way up to the ~26 billion cells that make up a newborn. Tracing how and when those 26 billion cells arise from one zygote is the grand challenge of developmental biology, a field that has so far only been able to capture and analyze snapshots of the development process.

Now, a new method developed by scientists at the Wyss Institute and Harvard Medical School (HMS) finally brings that daunting task into the realm of possibility using evolving genetic barcodes that actively record the process of cell division in developing mice, enabling the lineage of every cell in a mouse’s body to be traced back to its single-celled origin.

The research is published today in Science as a First Release article.

Continue reading “Recording every cell’s history in real-time with evolving genetic barcodes” »

Aug 8, 2018

Journal Club July 2018 — CRISPR may cause unwanted mutations

Posted by in categories: bioengineering, biotech/medical, genetics

The July edition of the Journal Club has us taking a look at a recent paper that casts doubt and concern over the use of CRISPR Cas9 for gene editing.

If you like watching these streams and/or would like to participate in future streams, please consider supporting us by becoming a Lifespan Hero: https://www.lifespan.io/hero

The paper we are discussing can be found here: https://www.nature.com/articles/nbt.

Continue reading “Journal Club July 2018 — CRISPR may cause unwanted mutations” »

Aug 7, 2018

The Genetics (and Ethics) of Making Humans Fit for Mars

Posted by in categories: ethics, food, genetics, space

We could make people less stinky, more resistant to radiation, even less dependent on food and oxygen. But would the new creature be human?

Read more

Aug 6, 2018

What is Autophagy? Definition, Benefits, 25 Ways to Increase It

Posted by in categories: genetics, health

Autophagy is how our cells recycle their components. Most of the time it runs quietly in the background. But when cells are stressed (such as during fasting or in the presence of dysfunctional proteins) it is increased in order to protect us. Read on to learn about autophagy, its definition and how it works, autophagy regulation, and how to increase autophagy through things like fasting.

Discover the exact, genetic factors in your body that are affecting autophagy with SelfDecode, the most powerful genetic health analysis tool available.

Continue reading “What is Autophagy? Definition, Benefits, 25 Ways to Increase It” »

Aug 4, 2018

Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women

Posted by in categories: biotech/medical, genetics, life extension

Evolutionary theory predicts that reproduction entails costs that detract from somatic maintenance, accelerating biological aging. Despite support from studies in human and non-human animals, mechanisms linking ‘costs of reproduction’ (CoR) to aging are poorly understood. Human pregnancy is characterized by major alterations in metabolic regulation, oxidative stress, and immune cell proliferation. We hypothesized that these adaptations could accelerate blood-derived cellular aging. To test this hypothesis, we examined gravidity in relation to telomere length (TL, n = 821) and DNA-methylation age (DNAmAge, n = 397) in a cohort of young (20–22 year-old) Filipino women. Age-corrected TL and accelerated DNAmAge both predict age-related morbidity and mortality, and provide markers of mitotic and non-mitotic cellular aging, respectively. Consistent with theoretical predictions, TL decreased (p = 0.031) and DNAmAge increased (p = 0.007) with gravidity, a relationship that was not contingent upon resource availability. Neither biomarker was associated with subsequent fertility (both p 0.3), broadly consistent with a causal effect of gravidity on cellular aging. Our findings provide evidence that reproduction in women carries costs in the form of accelerated aging through two independent cellular pathways.

Read more

Jul 30, 2018

Bioquark Inc. — Future Tech Podcast — Ira Pastor

Posted by in categories: aging, bioengineering, biological, business, cryonics, futurism, genetics, health, neuroscience, transhumanism

The Disease Time Machine – Ira Pastor – CEO, Bioquark, Inc. – How the Study of Organisms May Show Us the Way to Turn Back Time for Cell Regeneration

Page 1 of 10012345678Last