Toggle light / dark theme

Study unveils mechanisms driving axonal accumulation of TDP-43 and associated nerve damage in ALS

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle wasting and limb paralysis. This neurodegenerative condition results from the gradual destruction of motor neurons, the nerve cells that control muscles.

Past neuroscience studies have identified a TAR DNA-binding protein that plays a key role in ALS, known as TDP-43. This protein, which generally regulates RNA processing (i.e., how genetic information is managed inside cells), was found to abnormally accumulate in the axons (i.e., nerve fibers) of patients diagnosed with ALS.

Researchers at Tel Aviv University, Sheba Medical Center and other institutes carried out a study aimed at further exploring the mechanisms that underpin this local aggregation of TDP-43 in axons.

Toxic Salton Sea dust triggers changes in lung microbiome after just one week

Dust from California’s drying Salton Sea doesn’t just smell bad. Scientists from UC Riverside found that breathing the dust can quickly re-shape the microscopic world inside the lungs.

Genetic or have previously been shown to have an effect on lung microbes. However, this discovery marks the first time scientists have observed such changes from environmental exposure rather than a disease.

Published in the journal mSphere, the study shows that inhalation of airborne dust collected close to the shallow, landlocked lake alters both the microbial landscape and immune responses in mice that were otherwise healthy.

Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration

Cadoni et al. show that expression of the bacterial sonogenetic ion channel MscL(G22S) allows focused ultrasound (FUS) neuromodulation of the mouse visual cortex. They even provide evidence for possible induction of a visual percept in mice via this approach, though much more work is needed to make this into a useful visual restoration method. It should be noted that some of the FUS frequencies used in Cadoni et al.’s experiments were quite high (15 MHz), so a surgically implanted cranial window was needed. I personally think that it would be better to focus on frequencies that can be employed in a transcranial fashion to minimize invasiveness. That said, there is still merit to moderately invasive methods as seen here. #sonogenetics [ https://www.nature.com/articles/s41565-023-01359-6](https://www.nature.com/articles/s41565-023-01359-6)


Sonogenetics provides neuron-specific activation at high spatiotemporal resolution ex vivo in retina and in vivo deep in the visual cortex using the AAV gene delivery of a mechanosensitive ion channel and low-intensity ultrasound stimulations.

Decoding the T cell burst: Signature genes predict T cell expansion in cancer immunotherapy

The ability of immune cells—particularly CD8+ T cells—to launch a rapid burst of proliferation inside tumors is key to the success of modern day cancer immunotherapies. However, the factors and mechanisms that drive this burst in proliferation remain poorly understood, making it difficult to predict which patients will benefit from treatment. A deeper understanding of this T cell burst could also guide the development of new therapies that enhance T cell proliferation and improve treatment outcomes.

To tackle this challenge, an international team of researchers led by Associate Professor Satoshi Ueha and Professor Kouji Matsushima from the Research Institute for Biomedical Sciences, Tokyo University of Science (TUS), Japan, developed a novel approach to monitor CD8⁺ T cell activity over time. Their findings, published in the journal Nature Communications on October 20, 2025, sheds new light on how T cells expand in the tumor—and how their expansion can be predicted, and ultimately, therapeutically reactivated.

“The development of immunotherapies has been hindered by our inability to comprehensively monitor their effects on —particularly cancer-fighting T cells—over time,” explains Dr. Ueha. “Building on our previous work, we developed a method to track these cells longitudinally in the tumor, allowing us to gain deeper insights into the burst of that drives effective anti-tumor responses.”

Gene deficiency that causes obesity also protects from heart disease, finds new study

Deficiency of the gene melanocortin 4 receptor (MC4R) is linked with obesity among adults. A recent study has found that the same deficiency also leads to surprising outcomes such as reduced risk of heart disease, lower cholesterol, and triglycerides. These results contradict the well-established correlation between obesity and cardiovascular diseases.

The researchers scanned the of 7,719 children from the Genetics of Obesity Study (GOOS) cohort. They identified 316 probands—first person in a family to draw medical attention to a —and 144 adult family members with obesity due to loss-of-function (LoF) MC4R mutations.

Even after adjusting for weight, these individuals showed better blood pressure profiles and when compared to 336,728 controls from the UK Biobank.

Advancing human leukocyte antigen-based cancer immunotherapy: from personalized to broad-spectrum strategies for genetically heterogeneous populations

Human leukocyte antigen (HLA)-based immunotherapeutics, such as tebentafusp-tebn and afamitresgene autoleucel, have expanded the treatment options for HLA-A*02-positive patients with rare solid tumors such as uveal melanoma, synovial sarcoma, and myxoid liposarcoma. Unfortunately, many patients of European, Latino/Hispanic, African, Asian, and Native American ancestry who carry non-HLA-A*02 alleles remain largely ineligible for most current HLA-based immunotherapies. This comprehensive review introduces HLA allotype-driven cancer health disparities (HACHD) as an emerging research focus, and examines how past and current HLA-targeted immunotherapeutic strategies may have inadvertently contributed to cancer health disparities. We discuss several preclinical and clinical strategies, including the incorporation of artificial intelligence (AI), to address HACHD.

How happy do we need to be to have lower chronic disease mortality risk?

Heart disease, cancer, asthma, and diabetes: All are chronic or non-communicable diseases (NCD), which accounted for about 75% of non-pandemic related deaths in 2021. They may result from genetic, environmental, and behavioral factors, or a combination thereof. But can other factors also influence disease risk?

Now, a new Frontiers in Medicine study has investigated the relationship between and health to find out if happier always means healthier and to determine if happiness and co-occurring health benefits are linear or follow a specific pattern.

“We show that subjective well-being, or happiness, appears to function as a population health asset only once a minimum threshold of approximately 2.7 on the Life Ladder scale is surpassed,” said first author Prof Iulia Iuga, a researcher at 1 Decembrie 1918 University of Alba Iulia. “Above this tipping point, increased happiness is associated with a decrease in NCD mortality.”

How a human ‘jumping gene’ targets structured DNA to reshape the genome

Long interspersed nuclear element-1 (LINE-1 or L1) is the only active, self-copying genetic element in the human genome—comprising about 17% of the genome. It is commonly called a “jumping gene” or “retrotransposon” because it can “retrotranspose” (move) from one genomic location to another.

Researchers from the Institute of Biophysics of the Chinese Academy of Sciences have now unveiled the molecular mechanisms that underlie L1’s retrotransposition and integration into genomic DNA. Their study was published in Science on October 9.

L1 is the only autonomously active retrotransposon in the and serves as the primary vehicle for the mobilization of most other retrotransposons. Its retrotransposition process is mediated by the reverse transcriptase ORF2p through a mechanism known as target-primed reverse transcription (TPRT). Until now, the manner in which ORF2p recognizes DNA targets and mediates integration had remained unclear.

Christian Maugee — PhD Candidate, University Of Florida — From Patient To Genetics Research Pioneer

From patient to genetics research pioneer — christian maugee — phd candidate, university of florida.


Christian Maugee is a PhD Candidate at the University of Florida, in Genetics and Genomics (http://www.vulpelab.net/graduate-and-undergrad-students.html where his research explores how gene expression differs in the hearts of individuals with Friedrich’s Ataxia (FA), a rare, progressive neurodegenerative disease. His work could lead to new insights into the cardiac complications that can be associated with FA and how to potential treat them better.

Christian’s dissertation work is focused on identifying gene modulators of the transcriptional phenotype of FA in human induced pluripotent stem cells differentiated into cardiomyocytes (hPSC-CMs). He accomplishes this through use of a novel method: Perturb-seq — a CRISPR screen coupled with single cell RNA sequencing (scRNA-seq) readout.

Christian is driven by much more than academic curiosity, as he brings a unique and deeply human perspective to his work as someone living with FA. He doesn’t just study the challenges faced by those with disabilities; he lives them. His work is not only informed by data and theory, but by resilience, authenticity, and a commitment to making research more inclusive and impactful.

In the lab, Christian loves mentoring, and outside of the lab he loves fundraising and raising awareness for FA, mainly through FARA (https://www.curefa.org/) and MDA (https://www.mda.org/disease/friedreic…).

/* */