Toggle light / dark theme

Plants that reproduce exclusively by self-pollination arise from populations with extremely low diversity to begin with. Kobe University research not only adds a facet to possible evolutionary strategies, but also lends weight to Darwin’s suspicion that this strategy might be a path to extinction.

Charles Darwin once remarked, “It is hardly an exaggeration to say that nature tells us, in the most emphatic manner, that she abhors perpetual self-fertilization.” And yet, Kobe University botanist Suetsugu Kenji knows of a few islands in Japan where orchids reproduce without ever opening their flowers.

He says, “I’ve long been captivated by Darwin’s skepticism about plants that rely entirely on self-pollination. When I found those non-blooming orchids, I felt this was a perfect chance to directly revisit this issue. The apparent defiance of evolutionary common sense made me wonder what precise conditions—both environmental and genetic—would allow a purely self-pollinating lifestyle to emerge, let alone persist.”

Neural data analysis algorithms capable of tracking neuronal signals from one-photon functional imaging data longitudinally and reliably are still lacking. Here authors developed CaliAli, a tool for extracting calcium signals across multiple days. Validated with optogenetic tagging, dual-color imaging, and place cell data, CaliAli demonstrated stable neuron tracking for up to 99 days.

Duke University Medical Center-led research has identified a human-specific DNA enhancer that regulates neural progenitor proliferation and cortical size. Small genetic changes in HARE5 amplify a key developmental pathway, resulting in increased cortical size and neuron number in experimental models. Findings have implications for understanding the genetic mechanisms underlying neurodevelopmental disorders.

Humans possess a significantly larger and more complex cerebral cortex compared to other species, contributing to advanced cognitive functions. Comparative genomics research has identified Human Accelerated Regions (HARs), segments of non-coding DNA with human-specific genetic changes. Many HARs are located near genes associated with and neural differentiation.

Because thousands of HARs have been identified and linked to brain-related genes, the next critical step is to investigate how these actively shape human brain features.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Inherited mutations in the gene BRCA2 significantly increase the risk of carriers to breast and ovarian cancers. BRCA2, a crucial player in the body’s DNA repair system, aids in repairing damaged DNA. This function is particularly intriguing as our cells constantly divide and replicate, passing on any genetic damage to newly developing cells.

Because of its significant role in maintaining genetic stability, BRCA2 belongs to a class of genes known as tumor suppressors. These genes code for proteins that control how often cells divide. However, when a tumor suppressor gene, such as BRCA2, undergoes a mutational change, the protein it codes for won’t function normally, resulting in uncontrolled cell division and, in some circumstances, cancer development.

BRCA2 predisposes carriers to cancer and research has shown that BRCA2-deficient tumors respond to therapies known as PARP inhibitors, which block the function of the poly ADP-ribose polymerase 1 (PARP1) protein. PARP1 becomes activated in tumors with BRCA2 mutations, resulting in the continued abnormal growth of damaged DNA.

❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambda.ai/papers.

Guide for using DeepSeek on Lambda:
https://docs.lambdalabs.com/education/large-language-models/…dium=video.

📝 AlphaEvolve: https://deepmind.google/discover/blog/alphaevolve-a-gemini-p…lgorithms/
📝 My genetic algorithm for the Mona Lisa: https://users.cg.tuwien.ac.at/zsolnai/gfx/mona_lisa_parallel_genetic_algorithm/

📝 My paper on simulations that look almost like reality is available for free here:
https://rdcu.be/cWPfD

Or this is the orig. Nature Physics link with clickable citations:
https://www.nature.com/articles/s41567-022-01788-5

🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:

The development of COVID-19 vaccines has sparked widespread interest. mRNA-based therapies are rapidly gaining attention owing to their unique advantages in quickly developing vaccines and immunotherapy for various ailments [1, 2]. Given that most human diseases stem from genetic factors, gene therapy represents a promising modality for addressing various inherited or acquired disorders by replacing faulty genes or silencing genes [3]. Gene therapy encompasses the targeted exploitation of genetic material, which includes gene replacement through DNA or mRNA [4, 5]; gene silencing utilizing siRNA or miRNA [6], and CRISPR-Cas9 based gene editing [7].

However, achieving safe and efficient gene delivery to specific cells requires overcoming multiple biological barriers, including extracellular obstacles such as enzyme degradation, serum protein interactions, electrostatic repulsion of genes and cell membranes, and innate immune system, as well as intracellular obstacles such as endosomal escape, transport barriers, precise release [8]. Therefore, gene vectors require several characteristics such as high gene condensation; favorable serum stability to avoid non-specific serum protein interactions, endonuclease degradation, and renal clearance; achieved specific targeting cell or tissues; effective transport into the cytoplasm thereby facilitating gene transfection (mRNA, siRNA and miRNA); precise gene release and scheduling, and nuclear localization that enables DNA transcription. Comprehensive exploration of transfection mechanisms can aid in the development of high-performance gene vectors [9, 10].

Gene vectors generally include viral vectors and non-viral vectors. Presently, approximately 70% of clinical gene therapy trials employ viral vectors, which include retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses. Due to their exceptional infectivity, virus-based vectors typically exhibit excellent gene transfection capabilities. However, the clinical safety of viral vectors has been questioned due to their propensity to stimulate immunogenic reactions and induce transgene insertion mutations. Moreover, viral vectors possess several limitations, including low gene loading capacity, inability to deliver large-sized genes, complicated preparation procedures, and the patient cannot be repeatedly administered [4]. In contrast, non-viral vectors, particularly lipid nanoparticles (LNPs) and cationic polymers, have demonstrated robust gene loading capacity, heigh safety and practicability, simplicity preparation [10, 11]. Consequently, non-viral vectors are exhibiting tremendous potential for further clinical development and application. Our review primarily highlights the significant potential of non-viral vectors, particularly lipid nanoparticles (LNPs), highly branched poly(β-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). We intend to provide a detailed examination of the latest research progress and existing limitations of non-viral gene vectors over recent years.

Irritable bowel syndrome (IBS) is a prevalent and debilitating gastrointestinal disorder affecting approximately 5%–10% of the global population. Characterized by abdominal pain, bloating, and altered bowel habits, IBS imposes a significant burden on quality of life and health care systems worldwide.

Despite its prevalence, the exact pathogenesis of IBS remains elusive, and effective prevention strategies are lacking. Di Liu and colleagues conducted a comprehensive Mendelian randomization (MR) study—an approach that uses genetic variants as instrumental variables to infer causality.

The study integrates Mendelian randomization (MR) and multiresponse MR (MR2) analyses to distinguish genuine causal relationships from shared or spurious associations. The research is published in the journal eGastroenterology.