Toggle light / dark theme

First breathing ‘lung-on-chip’ developed using genetically identical cells

Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, holding promise for testing treatments for infections like tuberculosis (TB) and delivering personalized medicine.

The research is published in the journal Science Advances.

Air sacs in the lungs called alveoli are the essential site of gas exchange and also an important barrier against inhaled viruses and bacteria that cause respiratory diseases like flu or TB.

Scientists turn cells’ most mysterious structures into spies on genetic activity

The barrel-shaped structures found by the thousands in most animal cells are one of biology’s biggest mysteries. But although researchers haven’t figured out the function of these “vaults,” they now report a new use for the puzzling particles.


Enigmatic ‘vaults’ can be engineered to eavesdrop on RNA, aiding cancer studies and more.

A breakthrough in DNA sequencing hints at why most smokers don’t get lung cancer

Breakthrough in DNA sequencing offers clues to why most smokers do not develop lung cancer.


“Our data suggest that these individuals may have survived for so long in spite of their heavy smoking because they managed to suppress further mutation accumulation,” says pulmonologist and genetics researcher Simon Spivack, a co-author on the study. “This leveling off of mutations could stem from these people having very proficient systems for repairing DNA damage or detoxifying cigarette smoke.”

Researchers who study the health effects of cigarette smoke have used all kinds of methods — from giving lab animals high doses of chemicals found in tobacco to combing through archives to determine which diseases smokers get more often — to figure out how the habit affects the body. Those studies have made it clear that cigarettes contain hundreds of harmful chemicals, including dozens of carcinogens.

For decades, researchers didn’t have any way to measure the mutations in lung cells that actually cause lung cancer. Five years ago, researchers at Albert Einstein College of Medicine in New York found a way to overcome technical limitations that had made it impossible to sequence the genome. That is, they figured out how to determine the exact order of the A, T, C, and G molecules of the DNA within a single cell without introducing too many errors in the process.

A Genetic Risk Adoption Design for Psychiatric and Substance Use Disorders

Paternal genetic risk is a robust predictor of offspring psychiatric disorders, with additional “indirect genetic effects” observed for internalizing and substance use conditions in adoptive and stepfather relationships. Rearing effects were most pronounced for substance use disorders.


Question In an adoption study of major psychiatric illness, what results would be obtained if offspring risk were predicted not from the phenotype of the parents but from their genetic risk?

Findings In this cohort study, paternal genetic risk was associated with offspring risk of illness for all disorders in genetically related father-offspring pairs. In an indirect pathway, genetic risk in adoptive and stepfathers predicted risk in their offspring for internalizing and substance use disorders but not for schizophrenia or bipolar disorder.

Meaning Indirect genetic effects from the father may have an impact on offspring risk of internalizing and substance use disorders.

Cells Use ‘Bioelectricity’ To Coordinate and Make Group Decisions

According to the new results, as epithelial tissue grows, cells are packed more tightly together, which increases the electrical current flowing through each cell’s membrane. A weak, old, or energy-starved cell will struggle to compensate, triggering a response that sends water rushing out of the cell, shriveling it up and marking it for death. In this way, electricity acts like a health checkup for the tissue and guides the pruning process.

“This is a very interesting discovery — finding that bioelectricity is the earliest event during this cell-extrusion process,” said the geneticist GuangJun Zhang of Purdue University, who studies bioelectrical signals in zebra fish development and wasn’t involved in the study. “It’s a good example of how a widening electronic-signaling perspective can be used in fundamental biology.”

The new discovery adds to the growing assortment of bioelectrical phenomena that scientists have discovered playing out beyond the nervous system, from bacteria swapping signals within a biofilm to cells following electric fields during embryonic development. Electricity increasingly appears to be one of biology’s go-to tools for coordinating and exchanging information between all kinds of cells.

Collision-induced ribosome degradation driven by ribosome competition and translational perturbations

How cells eliminate inefficient ribosomes.

Inside every cell, ribosomes act as tiny but vital factories that build proteins, translating genetic information into the molecules that sustain life. Although ribosomes share the same basic structure, not all of them work with equal precision. Until now, scientists did not fully understand how cells detect and handle ribosomes that underperform.

Addressing this question, a team of researchers has identified a quality control mechanism that ensures only the most competent ribosomes survive. Their study, published in Nature Communications shows that ribosomes compete during protein synthesis. When translation is disrupted, the less efficient ribosomes are selectively broken down, while the stronger ones continue functioning.

Using biochemical and genetic analyses in yeast, the researchers examined how ribosomes behave when translation is disrupted. The team engineered cells to contain a functional but suboptimal ribosome variant. These slower-moving ribosomes are overtaken on messenger RNA by faster, native ribosomes, causing the two types to collide. Such ribosome-ribosome collisions activate a ubiquitination-dependent quality control pathway that selectively removes the less efficient ribosomes.

The team also explored how external factors, such as the anticancer drug cisplatin affect this process. Cisplatin, known for binding to RNA and DNA, was found to increase ribosome collisions, which in turn promoted ribosome degradation. This insight could improve understanding of how the drug acts inside cells and why it sometimes causes side effects.

The implications of this discovery extend beyond basic biology. By showing how cells maintain the quality of their protein factories, the study provides a foundation for understanding disorders caused by ribosome malfunction, known as ribosomopathies. It may also open the door to new approaches for improving the safety and effectiveness of certain drugs.

Johns Hopkins Scientists Identify Key Brain Protein That May Slow Alzheimer’s

Researchers at Johns Hopkins Medicine report that findings from a new study funded by the National Institutes of Health are helping to identify a promising new biological target for Alzheimer’s disease. The focus is a protein that produces a crucial gas within the brain.

Studies in genetically engineered mice show that the protein Cystathionine γ-lyase, also known as CSE, plays an essential role in forming memories, says Bindu Paul, M.S., Ph.D., an associate professor of pharmacology, psychiatry and neuroscience at the Johns Hopkins University School of Medicine who led the research. CSE is best known for generating hydrogen sulfide, the gas responsible for the smell of rotten eggs, but the new findings highlight its importance in brain function.

Mapping gene disruptions in sporadic early onset Alzheimer’s disease across key brain regions

A new study led by researchers at UTHealth Houston investigated both gene expression and regulation at single cell levels to reveal disruptions in gene function in three brain regions of patients with sporadic early onset Alzheimer’s disease.

The findings are published in Science Advances.

Only about 5% to 10% of patients with Alzheimer’s disease are younger than 65. Of those patients, 10% have mutations in the APP, PSEN1, and PSEN2 genes, which are associated with Alzheimer’s disease. The other 90% of these cases are classified as sporadic early onset Alzheimer’s, a rare and aggressive form of the disease that begins before age 65. The genetic tie in early onset Alzheimer’s is largely unidentified, representing a significant but understudied population.

Blood metabolite signature offers improved prediction of type 2 diabetes risk

Diabetes, a metabolic disease, is on the rise worldwide, and over 90% of cases are type 2 diabetes, where the body does not effectively respond to insulin.

Researchers from Mass General Brigham and Albert Einstein College of Medicine have identified metabolites (small molecules found in blood generated through metabolism) associated with the risk of developing type 2 diabetes in the future, and have revealed genetic and lifestyle factors that may influence these metabolites. They also developed a metabolomic signature that predicts future risk of type 2 diabetes beyond traditional risk factors.

Their results are published in Nature Medicine.

Lifespan‐Extending Endogenous Metabolites

Endogenous metabolites are small molecules produced by an organism’s own metabolism. They encompass a wide range of molecules, such as amino acids, lipids, nucleotides, and sugars, which are pivotal for cellular function and organismal health (Baker and Rutter 2023). Beyond serving as biosynthetic precursors and energy substrates, many metabolites also function as dynamic modulators of signaling and gene regulatory networks by engaging in protein–metabolite interactions, allosteric regulation, and by serving as substrates for chromatin and other post-translational modifications (Boon et al. 2020 ; Hornisch and Piazza 2025). Metabolites can function as extracellular signals activating G protein-coupled receptors (GPCRs), such as free fatty acid receptors for fatty acids, GPR81 for lactate, SUCNR1 for succinate, and TGR5 for bile acids (Tonack et al. 2013). These GPCRs are expressed in gut, adipose tissue, endocrine glands, and immune cells, linking nutrient and metabolite levels to diverse physiological responses (Tonack et al. 2013). Other metabolites serve as enzyme cofactors or epigenetic regulators. For example, methyl donors like betaine provide methyl groups for DNA and histone methylation and also act as osmolytes to protect cells under stress (Lever and Slow 2010). Some metabolites even form specialized structural assemblies. For instance, guanine crystals can form structural color in feline eyes and contribute to enhanced night vision (Aizen et al. 2018).

Perturbations of endogenous metabolite levels or fluxes have been linked to genomic instability, metabolic dysfunction, and age-related diseases, motivating study of metabolites as both biomarkers and functional modulators of aging (Adav and Wang 2021 ; Tomar and Erber 2023 ; Xiao et al. 2025). Metabolomic studies reveal characteristic metabolite changes in diabetes, cardiovascular disease, and Alzheimer’s disease (AD) (Panyard et al. 2022), suggesting that metabolites not only reflect organismal state but also can actively influence aging pathways. In subsequent sections, we will examine specific endogenous metabolites implicated in longevity regulation.

/* */