Menu

Blog

Archive for the ‘genetics’ category: Page 5

Jun 24, 2022

The Rise of Supersoldiers — How AI Changes Everything

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health, military, robotics/AI

Artificial Intelligence is touching almost every aspect of our lives. It’s reasonable to expect AI influence will only increase in the future. One of many fields heavily influenced by AI is the military. Particularly in the development of Supersoldiers. The notion of super-soldiers enhanced with biotechnology and cybernetics was once only possible in the realm of science fiction. But it may not be too long before these concepts become a reality.

A new worldwide arms race is pitting countries against each other to be the first to successfully create real genetically modified super soldiers by using tools such as CRISPR. Understandably many of these human enhancement technologies raise health and safety questions and it is more likely these enhancements will first gain traction in countries that do not place as much weight on ethical concerns.

Continue reading “The Rise of Supersoldiers — How AI Changes Everything” »

Jun 23, 2022

Researchers discover two important novel aspects of APOE4 gene in Alzheimer’s patients

Posted by in categories: biotech/medical, genetics, neuroscience

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia, affecting more than 5.8 million individuals in the U.S. Scientists have discovered some genetic variants that increase the risk for developing Alzheimer’s; the most well-known of these for people over the age of 65 is the APOE ε4 allele. Although the association between APOE4 and increased AD risk is well-established, the mechanisms responsible for the underlying risk in human brain cell types has been unclear until now.

Researchers from Boston University School of Medicine (BUSM) have discovered two important novel aspects of the gene: 1) human genetic background inherited with APOE4 is unique to APOE4 patients and 2) the mechanistic defects due to APOE4 are unique to human cells.

Our study demonstrated what the APOE4 gene does and which brain cells get affected the most in humans by comparing human and mouse models. These are important findings as we can find therapeutics if we understand how and where this risk gene is destroying our brain.

Continue reading “Researchers discover two important novel aspects of APOE4 gene in Alzheimer’s patients” »

Jun 22, 2022

A Shortcut to Preventing Cancer

Posted by in categories: biotech/medical, genetics

A new theory suggests that mutations have few straightforward ways to establish themselves in cells and cause tumors.

For many researchers, the road to cancer prevention is long and difficult, but a recent study by Rice University scientists suggests that there may be shortcuts.

A theoretical framework is being developed by Rice scientist Anatoly Kolomeisky, postdoctoral researcher Hamid Teimouri, and research assistant Cade Spaulding that will explain how cancers brought on by several genetic mutations might be more readily recognized and perhaps prevented.

Jun 21, 2022

Patients Treated With CRISPR Still “Cured” Three Years Later

Posted by in categories: bioengineering, biotech/medical, genetics

A long-running human trial has shown that CRISPR gene editing could prove to be a highly effective way of treating serious conditions.

The trial, which was kicked off in 2019 by an international team of scientists, found that a new gene-editing therapy called exagamglogene autotemcel, or ex-cel for short, was able to essentially “cure” patients with transfusion-dependent beta thalassemia (TDT) or severe sickle cell disease (SCD), two blood disorders that are conventionally treated using blood transfusions.

It’s a promising new use of the technology. Around 100,000 Americans are affected by TDT, while SCD affects an estimated 300 to 3,000. And in a broader sense, the results suggest that tinkering with genetic code could come to be a practical, widespread new area of medicine.

Jun 21, 2022

Biochemists use new tool to control mRNA

Posted by in categories: biotech/medical, chemistry, genetics

A team of researchers at the Institute of Biochemistry at Münster University discovered that by using so-called FlashCaps they were able to control the translation of mRNA by means of light. The results have been published in Nature Chemistry.

DNA () is a long chain of molecules composed of many individual components, and it forms the basis of life on Earth. The function of DNA is to store all genetic information. The translation of this into proteins—which an organism needs to function, develop and reproduce—takes place via mRNA (messenger ribonucleic acid). The DNA is transcribed to mRNA, and the mRNA in turn is translated into proteins (protein biosynthesis). In other words, the mRNA functions as an information carrier. Biochemists at the University of Münster have now developed a new biochemical tool that is able to to control the translation of RNA with the aid of light. These so-called FlashCaps enable researchers to control a variety of processes in cells both spatially and temporally and, as a result, to determine basic functions of proteins.

Jun 21, 2022

Switching DNA functions on and off with light

Posted by in categories: biotech/medical, chemistry, genetics

DNA is the basis of life on earth. The function of DNA is to store all the genetic information an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell. Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the processes that take place in the cell—for example, epigenetics, the key chemical change and regulatory lever in DNA. The results have been published in the journal Angewandte Chemie.

The cell’s functions depend on enzymes. Enzymes are proteins that carry out in the cell. They help to synthesize metabolic products, make copies of the DNA molecules, convert energy for the cell’s activities, change DNA epigenetically and break down certain molecules. A team of researchers headed by Prof. Andrea Rentmeister from the Institute of Biochemistry at the University of Münster used a so-called enzymatic cascade reaction to understand and track these functions better. This sequence of successive reaction steps involving different enzymes makes it possible to transfer so-called photocaging groups—chemical groups that can be removed by means of irradiation with light—to DNA. Previously, studies had shown that only small residues (small modifications such as methyl groups) could be transferred selectively to DNA, RNA (ribonucleic acid) or proteins.

“As a result of our work, it is now possible to transfer larger residues or modifications such as the photocaging groups just mentioned,” explains Nils Klöcker, one of the lead authors of the study and a Ph.D. student at the Institute of Biochemistry. Working together with structural biologist Prof. Daniel Kümmel, who also works at the Institute of Biochemistry, it was also possible to explain the basis for the changed activity at a .

Jun 20, 2022

Scientists Used CRISPR to Trace Every Human Gene to Its Function

Posted by in categories: biotech/medical, genetics

The vision didn’t exactly work out. DNA sequences, while capturing extremely powerful genetic information, don’t necessarily translate to indicating how our bodies behave. Genes can turn on or off in different tissues depending on the cell’s need. Reading a DNA sequence for any gene is like parsing the base code of a cell’s internal program. There’s the raw genetic code—the genotype—which determines the phenotype, life’s software that controls how cells behave. Linking the two has taken decades of painstaking experiments, slowly building up an encyclopedia of knowledge that decodes the influence of a gene on biological functions.

A new study ramped up the effort. Led by Drs. Thomas Norman and Jonathan Weissman at Memorial Sloan Kettering Cancer Center in New York and the University of California, San Francisco, respectively, the team built a Rosetta Stone for translating genotypes to phenotypes, with the help of CRISPR.

They went big. Changing gene expression in over 2.5 million human cells, the tech, dubbed Perturb-seq, comprehensively mapped how each genetic perturbation alters the cell. The technology centers around a sort of CRISPR on steroids. Once introduced into cells, Perturb-seq rapidly changes thousands of genes—a brutal shakeup at the genomic scale to see how single cells respond.

Continue reading “Scientists Used CRISPR to Trace Every Human Gene to Its Function” »

Jun 20, 2022

Rune Labs secures FDA clearance to use Apple Watch to track Parkinson’s symptoms

Posted by in categories: biotech/medical, genetics, life extension, neuroscience, wearables

Rune Labs, a precision neurology company, has announced its StrivePD software ecosystem for Parkinson’s disease has been granted 510(k) clearance by the US Food and Drug Administration (FDA) to collect patient symptom data through measurements made by Apple Watch.

By combining powerful wearable technology and self-reported symptom information with brain imaging, electrophysiology, genetic and other clinical data, StrivePD enables a data-driven approach to care management and clinical trial design for Parkinson’s.

Longevity. Technology: With this clearance, the Rune Labs’ StrivePD app enables precision clinical care and trial participation for tens of thousands of Parkinson’s patients who already use these devices in their daily lives.

Continue reading “Rune Labs secures FDA clearance to use Apple Watch to track Parkinson’s symptoms” »

Jun 19, 2022

Liz Parrish at the Digital Enterprise Show 2022 in Málaga, Spain

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Enjoy the talk given by Liz Parrish on June 14, 2022 during the Digital Enterprise Show 2022. The event took place from June 14th to the 16th in Málaga, Spain.


BioViva Science is using bioinformatics to improve gene therapies to enhance healthy human longevity and combat age-related diseases like Alzheimer’s, diabetes, cancer, and heart disease. TimeKeeper™ is an epigenetic clock and the BioViva BioVault™ is a bioinformatics database for researchers and consumers.

Continue reading “Liz Parrish at the Digital Enterprise Show 2022 in Málaga, Spain” »

Jun 19, 2022

Gene Therapy for Interstellar Travel

Posted by in categories: biotech/medical, genetics, life extension

Space is not a hospitable place. Radiation, zero gravity, and the vast distances between stops make interstellar travel look like a pipe dream right now, but they can be made more manageable with gene therapy. Along with obvious choices like follistatin to fight the loss of muscle mass, anti-aging gene therapies for telomerase induction, and Klotho expression can promote overall health. Keeping the crew healthy is essential when the nearest hospital could be billions of miles away.

In a statement to Astronomy Magazine, Dr João Pedro de Magalhães said “this roadmap sets the stage for enhancing human biology beyond our natural limits in ways that will confer not only longevity and disease resistance but will be essential for future space exploration.” There’s a big overlap between the genes needed to keep people healthy on earth and the genes needed to keep them safe in space.

There are a vast array of genes that will likely prove helpful to making long space voyages safe and comfortable. A vector, like BioViva’s CMV, will be needed to deliver the substantial genetic payloads astronauts will want to take with them into space.

Page 5 of 319First23456789Last