Toggle light / dark theme

De Novo Reconstruction of 3D Human Facial Images from DNA Sequence

Facial morphology is a distinctive biometric marker, offering invaluable insights into personal identity, especially in forensic science. In the context of high-throughput sequencing, the reconstruction of 3D human facial images from DNA is becoming a revolutionary approach for identifying individuals based on unknown biological specimens. Inspired by artificial intelligence techniques in text-to-image synthesis, it proposes Difface, a multi-modality model designed to reconstruct 3D facial images only from DNA. Specifically, Difface first utilizes a transformer and a spiral convolution network to map high-dimensional Single Nucleotide Polymorphisms and 3D facial images to the same low-dimensional features, respectively, while establishing the association between both modalities in the latent features in a contrastive manner; and then incorporates a diffusion model to reconstruct facial structures from the characteristics of SNPs. Applying Difface to the Han Chinese database with 9,674 paired SNP phenotypes and 3D facial images demonstrates excellent performance in DNA-to-3D image alignment and reconstruction and characterizes the individual genomics. Also, including phenotype information in Difface further improves the quality of 3D reconstruction, i.e. Difface can generate 3D facial images of individuals solely from their DNA data, projecting their appearance at various future ages. This work represents pioneer research in de novo generating human facial images from individual genomics information.

(Repost)


This study has introduced Difface, a de novo multi-modality model to reconstruct 3D facial images from DNA with remarkable precision, by a generative diffusion process and a contrastive learning scheme. Through comprehensive analysis and SNP-FACE matching tasks, Difface demonstrated superior performance in generating accurate facial reconstructions from genetic data. In particularly, Difface could generate/predict 3D facial images of individuals solely from their DNA data at various future ages. Notably, the model’s integration of transformer networks with spiral convolution and diffusion networks has set a new benchmark in the fidelity of generated images to their real images, as evidenced by its outstanding accuracy in critical facial landmarks and diverse facial feature reproduction.

Difface’s novel approach, combining advanced neural network architectures, significantly outperforms existing models in genetic-to-phenotypic facial reconstruction. This superiority is attributed to its unique contrastive learning method of aligning high-dimensional SNP data with 3D facial point clouds in a unified low-dimensional feature space, a process further enhanced by adopting diffusion networks for phenotypic characteristic generation. Such advancements contribute to the model’s exceptional precision and ability to capture the subtle genetic variations influencing facial morphology, a feat less pronounced in previous methodologies.

Despite Difface’s demonstrated strengths, there remain directions for improvement. Addressing these limitations will require a focused effort to increase the model’s robustness and adaptability to diverse datasets. Future research should aim to incorporating variables like age and BMI would allow Difface to simulate age-related changes, enabling the generation of facial images at different life stages an application that holds significant potential in both forensic science and medical diagnostics. Similarly, BMI could help the model account for variations in body composition, improving its ability to generate accurate facial reconstructions across a range of body types.

Genome of a 28-eyed jellyfish could provide insight on evolution of vision

One of the biggest mysteries of evolution is how species first developed complex vision. Jellyfish are helping scientists solve this puzzle, as the group has independently evolved eyes at least nine separate times. Different species of jellyfish have strikingly different types of vision, from simple eyespots that detect light intensity to sophisticated lens eyes similar to those in humans.

Biologists have studied jellyfish eye structure, light sensitivity, and visual behavior for decades, but the exact genes involved in jellyfish eye formation remain unknown.

Aide Macias-Muñoz, a professor of ecology and , is exploring how eyes and light detection evolved using genetic tools. Her lab has just completed a high-quality genome sequence of Bougainvillia cf. muscus, a small jellyfish-like animal in the Hydrozoa group that has an astonishing 28 eyes.

Is the Cell’s Antenna Related to Cancer Growth?

Many different types of cells in the body have a tiny projection known as a primary cilium. These cilia act like little signaling hub that can capture information about a cell’s environment and relay it to the cell, ultimately coordinating some cellular responses. The functions of cilia are well known in a few cases, such as in development, where they are crucial to the regulation of certain processes; or in some disorders called ciliopathies, in which genetic mutations lead to ciliary dysfunction and human disease.

Discovery of two new genetic disorders improves diagnoses for patients with neurodevelopmental conditions

The discovery of two new genetic disorders comes from a study delivered through the National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Center (BRC) and The University of Manchester and could provide answers for several thousands of people with neurodevelopmental conditions around the world.

Since the breakthrough, 18-year-old Rose Anderson from Stretford in Manchester has received a diagnosis of one of the newly discovered conditions.

Rose has been known to the team at the Manchester Center for Genomic Medicine at Manchester University NHS Foundation Trust (MFT) for nearly her whole life, although a precise diagnosis for her seizures and has proved difficult to find.

The Dogs of Chernobyl Are Experiencing Rapid Evolution, Study Suggests

Scientists have been analyzing certain animals living within the CEZ for years, including bacteria, rodents, and even birds. One study back in 2016 found that Eastern tree frogs (Hyla orientalis), which are usually a green color, were more commonly black within the CEZ. The biologists theorize that the frogs experienced a beneficial mutation in melanin—pigments responsible for skin color—that helped dissipate and neutralize some of the surrounding radiation.

This made scientists ponder: could something similar be happening to Chernobyl’s wild dogs?

The study uncovered that the feral dogs living near the Chernobyl Power Plant showed distinct genetic differences from dogs living only some 10 miles away in nearby Chernobyl City. While this may seem to heavily imply that these dogs have undergone some type of rapid mutation or evolution due to radiation exposure, this study is only a first step in proving that hypothesis.

Tumor diagnostics: AI model detects more than 170 types of cancer

The MRI shows a brain tumor in an inauspicious location, and a brain biopsy will entail high risks for a patient who had consulted doctors due to double vision. Situations such as this case prompted researchers at Charité—Universitätsmedizin Berlin to look for new diagnostic procedures. The result is an AI model.

The model makes use of specific characteristics in the genetic material of tumors—their epigenetic fingerprint, obtained for example from , among other things. As the team shows in the journal Nature Cancer, the new model classifies tumors quickly and very reliably.

Today, far more types of tumors are known than the organs from which they arise. Each tumor has its own characteristics: certain tissue features, growth rates and metabolic peculiarities. Nevertheless, tumor types with similar molecular characteristics can be grouped together. The treatment of the individual disease depends decisively on the type of tumor.

Genetic mutation linked to iron deficiency in Crohn’s disease patients

A study led by biomedical scientists at the University of California, Riverside School of Medicine shows how a genetic mutation associated with Crohn’s disease can worsen iron deficiency and anemia—one of the most common complications experienced by patients with inflammatory bowel disease, or IBD.

While IBD—a group of chronic inflammatory disorders that includes Crohn’s disease and ulcerative colitis—primarily affects the intestines, it can have effects beyond the gut. Iron deficient anemia is the most prevalent of these effects, contributing to and reduced quality of life, particularly during disease flare-ups.

The study, performed on serum samples from IBD patients, reports that patients carrying a loss-of-function mutation in the gene PTPN2 (protein tyrosine phosphatase non-receptor type 2) exhibit significant disruption in blood proteins that regulate . This mutation is found in 14–16% of the general population and 19–20% of the IBD population. A loss-of-function mutation is a genetic change that reduces or eliminates the normal function of a gene or its product, a protein.

Resisting Age-Related Blood Pressure Changes: 336 Days Of Testing

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/