Toggle light / dark theme

EGFRvIII-Specific Chimeric Antigen Receptor T Cells Migrate to and Kill Tumor Deposits Infiltrating the Brain Parenchyma in an Invasive Xenograft Model of Glioblastoma

Sharing for fellow researchers and others who have interest in GBM news.


Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of “immunologically silent” tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

Glioblastoma (GBM) is the most common form of primary malignant brain tumor in adults and remains one of the most deadly neoplasms. Despite multimodal therapy including maximal surgical resection, radiation, and temozolomide (TMZ), the median overall survival is less than 15 months [1]. Moreover, these therapies are non-specific and are ultimately limited by toxicity to normal tissues [2]. In contrast, immunotherapy promises an exquisitely precise approach, and substantial evidence suggests that T cells can eradicate large, well-established tumors in mice and humans [3] [7].

Chimeric antigen receptors (CARs) represent an emerging technology that combines the variable region of an antibody with T-cell signaling moieties, and can be genetically expressed in T cells to mediate potent, antigen-specific activation. CAR T cells carry the potential to eradicate neoplasms by recognizing tumor cells regardless of major histocompatibility complex (MHC) presentation of target antigen or MHC downregulation in tumors, factors which allow tumor-escape from treatment with ex vivo expanded tumor-infiltrating lymphocytes (TILs) [8] and T-cell receptor (TCR) gene therapy [9], [10].

Understanding Neuroendocrine Tumors and Carcinoid Syndrome

Bringing awareness on a syndrome that makes it hard for families and patients trying to have genetic testing on cancers in their families. I first came across this syndrome with a researcher at Swedish Medical Center’s Cancer Research Group. Some families can have so many various cancers that genetic testing is extremely costly to patients and may not be able to pinpoint the mutation due to this syndrome.


Yet misdiagnosis remains an ongoing challenge, and a recent international study involving more than 100 countries and nearly 2000 patients revealed the average case takes between 5 and 9 years to properly diagnose after the first symptoms appear, and the average patient may see five or six doctors, noted Richard R.P. Warner, MD, in an interview with Oncology Nursing News.

“You can’t detect it, if you don’t suspect it,” said Warner, who directs the Center for Carcinoid and Neuroendocrine Tumors at Mount Sinai Hospital. Most doctors will only see one or two cases in their lifetime, and symptoms of NETs, like diarrhea and recurrent episodes of flushing, are associated with other, more commonly seen conditions.

He added that to complicate matters even further, “no two samples of tumors are exactly identical.” The treatment has to be customized for each case and depends on where the tumor is located and how much it has spread.

DARPA wants ‘shape-shifting’ vaccines that evolve with viruses

DARPA taking on the designer viruses and resistant fighting viruses that we hate. Who knows; they may finally find the fountain of youth in the process.


Vaccines are great, but they’re no match for most viruses in play at any given time. This is due largely in part to the ever-changing nature of viruses and the expense and difficulty in developing new vaccines to target them. DARPA wants that reality to change, citing the numerous concerning viruses, past and present, that affect humanity. Under the “INTERCEPT” program, DARPA seeks “shape-shifting” vaccines that adapt to kill off viruses as they evolve.

One of the biggest virus scares at the moment is the zika virus, but ebola was just recently a big issue and other viruses, including influenza and dengue, are a continuous problem. Once someone is infected, the virus is able to “mutate and morph as they reproduce inside their hosts,” says DARPA, making any vaccines quickly obsolete. If the agency’s new INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT) program proves successful, though, things will change in a big way.

Under the program, DARPA seeks a solution that uses something called TIPs — Therapeutic Interfering Particles — which are described as small entities similar to viruses that are made in labs. TIPs are essentially genetic material packed within a protein shell, something that mimic the way a virus is structured. Because of their similarities, TIPs can enter cells like viruses but don’t proceeded to hijack that cell as viruses do.

What will destroy us first: Superbabies or AI?

Depends who is doing the creating. If a robot is created/ altered by ISIS to attack the western world then robots. At the same time, if a crazy scientist decides to genetically create Cyclops to take over the UK, US, etc. then the genetically alter species. Truly depends on the creator and the creator’s eye.


At Silicon Valley’s inaugural Comic Con, we gave a talk called “Superbabies vs. AI.” Astro, who is captain of moonshots at Alphabet’s X division, argued that genetically engineered babies are going to destroy civilization as we know it. He sees the horror of eugenics, X-Men, and a planet entirely populated by the sort of kids who beat him up in middle school, all rolled into one. Danielle, a physician-scientist and wife of said captain of moonshots, argued that the robot apocalypse is going to annihilate humanity. Super intelligent computers will eventually destroy us all, no matter what sort of Asimovian instructions we try to give them. The jury is out about who won the debate, but here are the most important issues we explored.

Will highly evolved AI break into banking systems and steal all of our money or send drones to kill us all?

It’s not likely that AI will ever resemble a human super villain. As an analogy, while airplanes and birds can both fly, they are not otherwise similar, and neither is better at all aspects of flying. Likewise, computers are already much better than humans when it comes to memory and calculations, but they can’t manage a three minute conversation with a barista at Starbucks.

Will Transhumanism Change Racism in the Future?

My new article for The Hufffington Post on whether transhumanism will change racism in the near future:


2016-04-07-1460007795-625540-cyborg438398_960_720.jpg
A future transhumanist? — CCO Public Domain

Despite decades of progress, racism and bigotry are still prevalent in the United States. Often, they even dominate the news in American media, like during the Baltimore riots or the Ferguson shooting. Movements like Black Lives Matter remind us that the society we live in still has many biases to be fought against, but that good work can be done to combat bigotry if people unite against it.

Despite this, the quest to find true equality in the world is about to get more complicated. It’s possible the ability to completely change skin color may arrive in the next 15–30 years. Like a chameleon, expect humans to literally change their skin color soon through coming technologies—most that will probably be based on genetic editing.

Already, humans have the technology to change the color of eyes and choose the sex of their offspring. But on the horizon are new techniques—based on CRISPR technology—that may permanently or temporarily alter the melanin in our skin (the pigment mostly responsible for its color). And like some characters in the X-Men film series, we may even be able to do this in real-time someday.

/* */