Toggle light / dark theme

To fight cybercrime, student unravels the layers of 3D printing

To most people, a 3D printer is a cool piece of technology that can make toys, tools or parts in minutes. But for Hala Ali, it can be a partner in crime, and the doctoral student at Virginia Commonwealth University earned national honors recently for her work exploring one of the fastest-growing frontiers in cybercrime.

Ali, a computer science student in the College of Engineering, won best paper at this summer’s 25th annual Digital Forensics Research Conference in Chicago. The paper, “Leveraging Memory Forensics to Investigate and Detect Illegal 3D Printing Activities,” reflects her research into how digital forensics can help investigators uncover whether a 3D printer was used to create weapons or other illegal objects.

“3D printing is a process of creating a physical object from a by laying down successive layers of material until the object is created,” Ali said.

Engineers create bioelectronic hydrogels to monitor activity in the body

Wearable or implantable devices to monitor biological activities, such as heart rate, are useful, but they are typically made of metals, silicon, plastic and glass and must be surgically implanted. A research team in the McKelvey School of Engineering at Washington University in St. Louis is developing bioelectronic hydrogels that could one day replace existing devices and have much more flexibility.

Alexandra Rutz, an assistant professor of biomedical engineering, and Anna Goestenkors, a fifth-year doctoral student in Rutz’s lab, created novel granular hydrogels. They are made of microparticles that could be injected into the body, spread over tissues or used to encapsulate cells and tissue and also to monitor and stimulate biological activity. Results of their research were published Oct. 8 in the journal Small.

The microparticles are spherical hydrogels made from the conducting polymer known as PEDOT: PSS. When packed tightly, they are similar to wet sand or paste: They hold as a solid with micropores, but they can also be 3D printed or spread into different shapes while maintaining their structure or redistributed into individual microparticles when placed in liquid.

AI-guided drones use 3D printing to build structures in hard-to-reach places

Disaster has just struck, roads are inaccessible, and people need shelter now. Rather than wait days for a rescue team, a fleet of AI-guided drones takes flight carrying materials and the ability to build shelters, reinforce infrastructure, and construct bridges to reconnect people with safety.

It sounds like , but new research from Carnegie Mellon University’s College of Engineering combines drones, additive manufacturing, and to rethink the future of aerial construction.

Aerial (AM)—think flying 3D printers, has been fascinating researchers for years, but the natural instability of a drone in flight makes traditional layer-by-layer fabrication nearly impossible. To overcome this, Amir Barati Farimani, associate professor of mechanical engineering, has equipped drones with magnetic blocks to allow for precise pick-and-place assembly and a large language model (LLM) that can translate high-level design goals like “build a bridge” into executable plans.

Secret QR codes and hidden warnings: 3D printing technique allows precise control of material properties, point by point

3D printing is extremely practical when you want to produce small quantities of customized components. However, this technology has always had one major problem: 3D printers can only process a single material at a time. Until now, objects with different material properties in different areas could only be 3D-printed at great expense, if at all.

Researchers at TU Wien have now developed methods for giving a 3D-printed object not only the desired shape, but also the desired material properties, point by point.

The versatility of this technology has been demonstrated in several applications: for example, it is possible to print an invisible QR code that only becomes visible at certain temperatures.

3D-printed microrobots adapt to diverse environments with modular design

Microrobots, small robotic systems that are less than 1 centimeter (cm) in size, could tackle some real-world tasks that cannot be completed by bigger robots. For instance, they could be used to monitor confined spaces and remote natural environments, to deliver drugs or to diagnose diseases or other medical conditions.

Researchers at Seoul National University recently introduced new modular and durable microrobots that can adapt to their surroundings, effectively navigating a range of environments. These , introduced in a paper published in Advanced Materials, can be fabricated using 3D .

“Microrobots, with their insect-like size, are expected to make contributions in fields where conventional robots have struggled to operate,” Won Jun Song, first author of the paper, told Tech Xplore. “However, most microrobots developed to date have been highly specialized, tailored for very specific purposes, making them difficult to deploy across diverse environments and applications. Our goal was to present a new approach toward creating general-purpose microrobots.”

3D-printed metamaterials harness complex geometry to dampen mechanical vibrations

In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.

But we may be at an inflection point along that path when it comes to engineered structures whose are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory (AFRL) has shown how to 3D print intricate tubes that can use their to stymie vibrations.

Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.

Smart microfibers turn everyday objects into health care monitors and energy devices

New research led by the University of Cambridge, in collaboration with Hong Kong University of Science and Technology (GZ) and Queen Mary University of London, could redefine how we interact with everyday tools and devices—thanks to a novel method for printing ultra-thin conductive microfibers.

Imagine fibers thinner than a human hair (nano-to micro-scale in diameter) that can be tuned on-demand to add sensing, energy conversion and electronic connectivity capabilities to objects of different shapes and surface textures (such as glass, plastic and leather). This is what the researchers have achieved, including in unconventional materials like porous graphene aerogels, unlocking new possibilities for human-machine interaction in various everyday settings.

The researchers present a one-step adaptive fiber deposition process using 3Dprinting, set up to satisfy the fast-changing demands of users. The process enables the on-demand deployment of conductive material layers on different surface areas, dependent on the model’s geometry, at the point of use. The findings are reported in the journal Advanced Fiber Materials.

Biomaterials and cell-based therapy post spinal cord injury

Spinal cord injury (SCI) imposes a significant physical, social, and economic burden on millions of patients and their families worldwide. Although medical and surgical care improvements have decreased mortality rates, sustained recovery remains constrained. Cell-based therapies offer a promising strategy for neuroprotection and neuro-regeneration post-SCI. This article reviews the most promising preclinical approaches, encompassing the transplantation of embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), Schwann cells (SCs), and olfactory ensheathing cells (OECs), along with the activation of endogenous pluripotency cell banking strategies. We also outline key ancillary strategies to enhance graft cell viability and differentiation, such as trophic factor assistance, engineered biomaterials for supportive scaffolds, and innovative methods for a synergistic effect in treatment, including promoting neuronal regeneration and reducing glial scars. We highlight the key aspects of SCI pathophysiology, the fundamental biology of cell treatments, and the advantages and limitations of each approach.

There are several approaches to treating spinal cord injuries that show great promise: Cellular therapies, which utilize a range of cells such as embryonic, neural, and mesenchymal stem cells, along with astrocytes, Schwann cells, olfactory ensheathing cells, and reprogrammed cells; The use of innovative biomaterials, including hydrogels, collagen, polycaprolactone fibers, and advanced 3D-printing technologies, provides valuable support for tissue repair.

/* */