The LHCb experiment has taken a leap in precision physics at the Large Hadron Collider (LHC). In a new paper submitted to Physical Review Letters and currently available on the arXiv preprint server, the LHCb collaboration reports the first dedicated measurement of the Z boson mass at the LHC, using data from high-energy collisions between protons recorded in 2016 during the collider’s second run.
The Z boson is a massive, electrically neutral particle that mediates the weak nuclear force—one of nature’s fundamental forces. With a mass of about 91 billion electronvolts (GeV), it ranks among the heaviest known elementary particles.
Discovered at CERN more than 40 years ago, alongside the W boson, the Z boson played a central role in confirming the Standard Model of particle physics—a breakthrough that led to the 1984 Nobel Prize in Physics. Measuring its mass precisely remains essential for testing the Standard Model and searching for signs of new physics.