Toggle light / dark theme

ANEMEL researchers have created a catalyst for water splitting that’s efficient and stable, without relying on scarce platinum group metals (PGMs). The study, recently published in Energy & Environmental Science, reports a high-performance PGM-free catalyst for the cathode in water electrolysis, responsible for the reaction that creates green hydrogen.

Current anion exchange membrane (AEM) water electrolyzers rely on PGMs, which are scarce and expensive. Specifically, these metals are used as catalysts at the cathode, where hydrogen is generated. However, ANEMEL AEM electrolyzers avoid PGMs, opting instead for more abundant metals such as nickel. This is essential to enable the wide adoption of electrolyzers: it helps to decrease the cost of electrolyzer components and improve their recyclability, reducing waste and providing a competitive advantage.

This requires investigating innovative ways to ensure electrolyzers perform at least as well, if not better than, those made with PGMs. After all, platinum and other metals in this group offer excellent activity and stability, especially at high current densities in electrolyzer environments, something PGM-free catalysts still don’t.

By crafting an artificial brain-like environment with microscopic nanopillars, researchers have successfully guided neurons to grow in structured networks. This innovation could revolutionize how scientists study neurological conditions by offering a more accurate way to observe brain cell behavior.

Now scientists believe they have made a breakthrough by creating implantable patches composed of beating heart muscle that can help the organ contract.

Prof Ingo Kutschka, the co-author of the work from University Medical Center Göttingen in Germany, said: “We now have, for the first time, a laboratory grown biological transplant available, which has the potential to stabilise and strengthen the heart muscle.”

The patches are made from cells taken from blood and “reprogrammed” to act as stem cells, which can develop into any cell type in the body.

Breast cancer is the most diagnosed cancer among women globally1. In the past decade, multimodal approaches and innovative therapies have transformed the outlook of this lethal disease, leading to gains in patient survival2. Despite these advances, nearly 685,000 women die of breast cancer each year worldwide1, largely due to the development of incurable distant metastases to vital organs3. In this context, a potentially critical factor may lie within the underlying principles of most anticancer drugs. Standard-of-care treatments are typically developed on the basis of their cytotoxic activity and are not necessarily designed to interfere with metastasis-relevant mechanisms4,5. Consequently, there is an intriguing yet uncharted opportunity for the development of metastasis-targeted agents that disrupt the causes of metastasis themselves4,5.

Circulating tumor cells (CTCs) are living cells that are shed from both primary and metastatic lesions into the bloodstream, acting as metastatic pioneers6. The presence of CTCs has been firmly established to be predictive of poor prognosis in patients with breast cancer7. Recent studies by us and others demonstrated that clusters of CTCs, defined as multicellular aggregates of cancer cells alone (homotypic) or in liaison with immune cells (heterotypic), have a substantially higher metastatic capacity and a stronger association with a poor prognosis than single CTCs8,9,10. Preclinical studies further revealed unique biological properties and vulnerabilities of these clusters, such as stem-like and proliferation features dependent upon cell–cell adhesion integrity8,11. A screen with 2,486 US Food and Drug Administration-approved drugs demonstrated that Na+/K+ ATPase inhibitors, such as cardiac glycosides, effectively dissolve CTC clusters into single cells, leading to metastasis suppression in mouse models of breast cancer11. Consequently, the Digoxin Induced Dissolution of CTC Clusters (DICCT) trial has been set up as a multicentric, prospective, first-in-human proof-of-concept, single-arm, therapeutic exploratory phase 1 study aimed to examine whether the Na+/K+ ATPase inhibitor digoxin could disrupt CTC clusters in patients with metastatic breast cancer at dose levels that are safe and well tolerated (NCT03928210; DICCT/Swiss-GO-07).

The primary objective of the study was to assess the effect of digoxin on CTC cluster size in patients with metastatic breast cancer. Of note, the size of CTC clusters, rather than their general abundance, best reflects cluster-dissolution properties. Secondary objectives included the effect of digoxin on the overall abundance of CTC clusters, the kinetics of CTC cluster dissolution and the dose–response relationship of the effect. Patients aged 18 years or older with locoregionally recurrent or metastatic breast cancer with progressive disease not amenable to treatments with curative intent were eligible for study inclusion. A total of 58 patients were screened by means of peripheral blood sampling and CTC cluster assessment. Of these, 11 patients resulted positive for CTC clusters at baseline, were enrolled in DICCT and received digoxin at 0.125–0.250 mg per day (intention-to-treat population) (Fig. 1a).

Science and research continuously deliver groundbreaking discoveries, expanding the boundaries of what we know. Each year, the renowned journal Science highlights ten of these achievements in its list of top scientific breakthroughs. For 2024, the journal named the drug lenacapavir — hailed for its potential to reduce HIV/AIDS infections to zero — as the Breakthrough of the Year. In the realm of physics, another major milestone was recognized: the discovery of altermagnetism by researchers at Johannes Gutenberg University Mainz (JGU).

“This is a truly unique tribute to our work, and we are proud and honored to receive this acknowledgment for our research,” said Professor Jairo Sinova of the JGU Institute of Physics. He and his team discovered and demonstrated the phenomenon of altermagnetism.

Until now, physics recognized only two types of magnetism: ferromagnetism and antiferromagnetism. Ferromagnetism, known since ancient Greece, is the force that makes refrigerator magnets stick, where all magnetic moments align in the same direction. Antiferromagnetism, on the other hand, involves magnetic moments aligning in a regular pattern but pointing in opposite directions, canceling each other out externally.

China introduces its breakthrough DeepSeek R1 AI model as well as the most humanlike movement of potentially any robot so far with the AGI Bot A2 with BridgeDP Robotics, plus Chinese company Lumos showcases a stress test video of its LUS1 humanoid robot. Finally, ByteDance releases UI-TARS to compete with OpenAI’s Orchestrator agentic AI for autonomous GUI task execution.

GENERATIVE AI SPECIALIZATION: https://imp.i384100.net/START-HERE
AI Marketplace: https://taimine.com/

Atlantis by Audionautix is licensed under a Creative Commons Attribution 4.0 license. https://creativecommons.org/licenses/.… news timestamps: 0:00 BridgeDP & AGI Bot A2 3:52 DeepSeek R1 4:36 Lumos LUS1 5:31 UI-TARS agentic AI #ai #robot #technology.

AI news timestamps:

#bed Year 2006


July 5, 2006 Given that we spend roughly a third of our life asleep, the humble bed has had remarkably little innovation pointed in its direction over the ages. So a new floating bed which hovers 40 cm above the floor represents a significant development in the design of sleeping apparatus. Debuting at the recent Millionaire Fair in Kortrijk, Belgium, the floating bed is the result of six years of development by Dutch architect Janjaap Ruijssenaars working with Bakker Magnetics. Using the power of permanent opposing industrial-strength magnets to enable it to float, the full scale bed can hold 900 kilograms of weight, while a smaller one fifth scale platform can safely hold 80 kilogams. Already people are beginning to see many applications for the simple yet visually arresting platforms ranging from the basis for a sofa, Coffee table, Japanese dining table and particularly in the display areas where museums and high-end visual merchandisers are beginning to conceptualise numerous creative uses.

Four thin cables assure its motionless position and form the only contact with the ground and the only other aspect which concerned us about what is essentially a stunningly simple device was the issue of sleeping in such close proximity to magnetic fields.

Janjaap assures us that should you feel inclined to slip your bankcard into your pyjamas, the magnetic field atop the unit is not enough to degauss the magnetic strip. The field below the unit is a different matter however, and given that the magnetic field is strong enough to suspend 900 kilograms, it’s not recommended that people with pacemakers go under the bed – so if you’re wearing a pacemaker and drop the strawberry lube while using the floating bed, it’d be advisable to ask your partner to retrieve it.

Medical breakthroughs often change lives, but some redefine what’s possible for the future of healthcare. This historic achievement brings hope to millions around the world.

Discover the story of how one doctor’s groundbreaking work is reshaping what we know about hearing loss and recovery.


Imagine living in a world of perpetual silence—where the laughter of loved ones and the melody of a favorite song are mere concepts, never experienced. For millions across the globe, this silence is a daily reality caused by hearing loss. Yet, a breakthrough in medical science has rewritten the possibilities, turning silence into sound. At the center of this transformation stands Dr. Mashudu Tshifularo, a South African surgeon whose revolutionary use of 3D-printed implants has achieved what was once deemed impossible: curing deafness.