Toggle light / dark theme

The boundaries of computing are shifting as biology fuses with technology. At the center of this new frontier is an emerging concept: a liquid computer powered by DNA. With the ability to support more than 100 billion unique circuits, this system could soon transform how we detect and diagnose disease.

While DNA is best known for encoding life, researchers are now exploring its potential as a computing tool. A team led by Dr. Fei Wang at Shanghai Jiao Tong University believes DNA can do much more than carry genetic instructions.

Their study, recently published in Nature, reveals how DNA molecules could become the core components of new computing systems. Rather than just holding genetic data, DNA could behave like wires, instructions, or even electrons inside biological circuits.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

As researchers work to improve treatment of Alzheimer’s disease, new research by UCLA Health identified a candidate drug that reduces levels of a toxic form of a protein in the brain caused by the disease and improved memory in mice by boosting production of a protective protein.

In a study published in npj Drug Discovery, UCLA Health researchers targeted the protein clusterin (CLU), which is crucial in preventing the build-up of amyloid-beta plaques and tau proteins that disrupt communication between and lead to memory impairment—a hallmark symptom of Alzheimer’s disease.

More than a decade ago, a variant of the gene that encodes clusterin was identified as the third strongest genetic risk factor for late-onset Alzheimer’s disease. It was recently reported that increased CLU protein could provide protection against Alzheimer’s disease and .

Forget the gym—living longer could hinge on simple daily habits. Dr. Gareth Nye emphasizes whole-day activity, clean eating, quality sleep, and genetic awareness as the real drivers of longevity. Standing desks, frozen veggies, and knowing your family health risks might be more effective than intense workouts in boosting life expectancy and preventing chronic illness.

A breakthrough study, led by scientists at Waipapa Taumata Rau, University of Auckland, has uncovered how daylight can boost the immune system’s ability to fight infections.

The team focused on the most abundant immune cells in our bodies, called neutrophils, which are a type of white blood cell. These cells move quickly to the site of an infection and kill invading bacteria.

The researchers used zebrafish, a small freshwater fish, as a , because its is similar to ours and the fish can be bred to have transparent bodies, making it easy to observe biological processes in real time.

Not everyone needs 8 hours of sleep to function properly. Some people can feel well-rested and show no negative effects of sleep deprivation, even after just 4 hours of sleep, which is likely the result of a genetic mutation.

A recent study has reported that a mutation in salt-induced kinase 3 (hSIK3-N783Y)—a gene critical for regulating sleep duration and depth—may be the reason why some people are natural short sleepers (NSS).

The findings of this study are published in Proceedings of the National Academy of Sciences.

DNA is the genetic code that provides the biological instructions for every living species, but not every bit of DNA helps the species survive. Some pieces of DNA are more like parasites, along for the ride and their own survival.

To translate DNA into proteins, the building blocks of life, many of these selfish DNA elements have to be removed from the . Doing so enables the body to produce the wide diversity of proteins that allow for complex life, but the process can also lead to , like some kinds of cancer.

University of California, Santa Cruz researchers are studying the ways that these genetic elements hide and make copies of themselves, so they can propagate within a species’ DNA, or even hop from one species to an unrelated one in a process called horizontal gene transfer.

An international team of researchers has found a genetic link to long-term symptoms after COVID-19. The identified gene variant is located close to the FOXP4 gene, which is known to affect lung function. The study, published in Nature Genetics, was led by researchers at Karolinska Institutet in Sweden and the Institute for Molecular Medicine in Finland.

Biological causes behind persistent symptoms after COVID-19 infection, known as long COVID or post-COVID, remain unclear. Common symptoms include fatigue, cognitive difficulties, and breathing problems, which can reduce quality of life.

In an —the Long COVID Host Genetics Initiative—researchers have analyzed from 6,450 long COVID patients and more than a million controls across 24 studies from 16 countries.