Toggle light / dark theme

New observations from the National Science Foundation National Radio Astronomy Observatory’s (NSF NRAO) Karl G. Jansky Very Large Array (NSF VLA) provide compelling evidence supporting a universal mechanism for the collimation of astrophysical jets, regardless of their origin.

The new study, published in The Astrophysical Journal Letters, reveals the presence of a helical magnetic field within the HH 80–81 protostellar jet, a finding that mirrors similar structures observed in jets emanating from supermassive black holes.

Jets, powerful, highly collimated outflows of matter and energy, are observed across a vast range of scales in the universe. From the supermassive black holes at the centers of galaxies to the young stars in our own Milky Way, these jets play a crucial role in the evolution of their host systems. However, the precise mechanism that guides these jets and prevents them from dispersing into space has remained a long-standing puzzle.

Detecting dark matter particles and understanding their underlying physics is a long-standing research goal for many researchers worldwide. Dark matter searches have been aimed at detecting different possible signals that could be associated with the presence of these elusive particles or with their interaction with regular matter.

A promising technology for conducting dark matter searches is the SENSEI (Sub-Electron Noise Skipper-CCD experimental instrument) detector, a highly sensitive imaging sensor located at the SNOLAB research facility in Canada.

The research group analyzing data collected by this detector, dubbed the SENSEI collaboration, have published the results of their first search for sub-GeV dark matter at SNOLAB in the journal Physical Review Letters.

Detecting dark matter, the elusive type of matter predicted to account for most of the universe’s mass, has so far proved to be very challenging. While physicists have not yet been able to determine what exactly this matter consists of, various large-scale experiments worldwide have been trying to detect different theoretical dark matter particles.

One of these candidates is so-called light dark matter (LDM), particles with low masses below a few giga-electron volts (GeV/c2). Theories suggest that these particles could weakly interact with ordinary matter, yet the weakness of these interactions could make them difficult to detect.

The NEON (Neutrino Elastic Scattering Observation with Nal) collaboration, a group of researchers analyzing data collected by the NEON detector at the Hanbit nuclear reactor in South Korea, have published the results of their first direct search for LDM.

What exists at the core of a black hole? A research team led by Enrico Rinaldi, a physicist at the University of Michigan, has leveraged quantum computing and machine learning to analyze the quantum state of a matrix model, providing new insights into the nature of black holes.

The study builds on the holographic principle, which suggests that the fundamental theories of particle physics and gravity are mathematically equivalent, despite being formulated in different dimensions.

Two prevailing theories describe black holes from different dimensional perspectives. In one framework, gravity operates within the three-dimensional geometry of the black hole. In contrast, particle physics is confined to the two-dimensional surface, resembling a flat disk. This duality highlights a key distinction between the two models while reinforcing their interconnected nature.

BIG Projects To Solve Pressing Issues In Science — Dr. Christopher Stubbs, Ph.D. — Professor of Physics and Astronomy, Harvard University.


Dr. Christopher Stubbs, Ph.D. is the Samuel C. Moncher Professor of Physics and Astronomy, and has recently served as the Dean of Science in the Faculty of Arts and Sciences, at Harvard University (https://astronomy.fas.harvard.edu/peo

Dr. Stubbs is an experimental physicist working at the interface between particle physics, cosmology and gravitation. His interests include experimental tests of the foundations of gravitational physics, searches for dark matter, characterizing the dark energy, and observational cosmology.

Scientists at the PHENIX experiment at RHIC have uncovered compelling evidence that even collisions involving small nuclei with large ones can produce tiny droplets of quark-gluon plasma.

Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.

Chinese astronomers have investigated quasar candidates from the DESI Legacy Surveys (DESI-LS) photometry catalog. As a result, they detected 19 strongly-lensed, dual and projected quasars. The finding was reported in a paper published Jan. 15 on the arXiv pre-print server.

Quasars, or quasi-stellar objects (QSOs), are (AGN) of very high luminosity powered by (SMBHs), emitting electromagnetic radiation observable in radio, infrared, visible, ultraviolet and X-ray wavelengths. They are among the brightest and most distant objects in the known universe, and serve as fundamental tools for numerous studies in astrophysics as well as cosmology.

Two observed with a small separation can be, in some cases, lensed quasars—where the light from a single quasar is bent, resulting in two images of the same quasar. More often, such objects are dual quasars, which means that they are at similar redshift and physically interacting. However, the most common scenario is projected quasars—coincidentally appearing very close to each other along the line of sight, but actually at different redshifts.

Many seek a path to enlightenment through study and meditation, but what does science tell us about transcendence? And could entire civilizations seek to leave this reality behind?

Watch my exclusive video Exploring The Multiverse: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Check out https://evodevouniverse.com/ to learn more about Transcension Hypothesis or the 2012 Paper:
https://www.researchgate.net/publicat

Visit our Website: http://www.isaacarthur.net.