Menu

Blog

Archive for the ‘biological’ category: Page 4

Sep 10, 2020

The Cybernetic Singularity: When Humankind Transcends Biology

Posted by in categories: biological, robotics/AI, singularity

The ability of future superintelligent machines and enhanced humans alike to instantly transfer knowledge and directly share experiences with each other in digital format will lead to evolution of intelligence from relatively isolated individual minds to the global community of hyperconnected digital minds. The forthcoming phenomenon, the Syntellect Emergence, or the Cybernetic Singularity, is already seen on the horizon, when Digital Gaia, the global neural network of billions of hyperconnected humans and superintelligent machines, and trillions of sensors around the planet, “wakes up” as a living, conscious superorganism. It is when, essentially, you yourself transcend to the higher Gaian Mind. https://link.medium.com/vXrDIWOns9

#CyberneticSingularity


“Evolution is a process of creating patterns of increasing order… I believe that it’s the evolution of patterns that constitutes the ultimate story of our world. Each stage or epoch uses the information-processing methods of the previous…

Continue reading “The Cybernetic Singularity: When Humankind Transcends Biology” »

Sep 8, 2020

Physicists nudge atoms within less than a trillionth of a second

Posted by in categories: biological, chemistry, particle physics, quantum physics, solar power, sustainability

Scientists from Regensburg and Zurich have found a fascinating way to push an atom with controlled forces so quickly that they can choreograph the motion of a single molecule within less than a trillionth of a second. The extremely sharp needle of their unique ultrafast microscope serves as the technical basis: It carefully scans molecules, similar to a record player. Physicists at the University of Regensburg now showed that shining light pulses onto this needle can transform it into an ultrafast “atomic hand.” This allows molecules to be steered—and new technologies can be inspired.

Atoms and are the constituents of virtually all matter that surrounds us. Interacting with each other according to the rules of quantum mechanics, they form complex systems with an infinite variety of functions. To examine , in a cell, or new ways of solar energy harvesting, scientists would love to not only observe individual molecules, but even control them.

Most intuitively, people learn by haptic exploration, such as pushing, pulling, or tapping. Naturally, we are used to macroscopic objects that we can directly touch, squeeze or nudge by exerting forces. Similarly, atoms and molecules interact via forces, but these forces are extreme in multiple respects. First, the forces acting between atoms and molecules occur at extremely small lengths. In fact, these objects are so small that a special length scale has been introduced to measure them: 1 Ångström (1Å = 0.000,000,000,1 m). Second, at the same time, atoms and molecules move and wiggle around extremely fast. In fact, their motion takes place faster than picoseconds (1 ps = 0.000,000,000,001 s). Hence, to directly steer a molecule during its motion, a tool is required to generate ultrafast forces at the atomic scale.

Sep 2, 2020

Brain study reveals one type of exercise increases stress resilience

Posted by in categories: biological, food, genetics, health, neuroscience

In a recent study conducted in mice, researchers became one step closer to that understanding, discovering that exercise actually strengthens the brain’s resilience to stress. Exercise helps animals cope with stress by enabling an uptick in a crucial neural protein called galanin, the study suggests. This process influences stress levels, food consumption, cognition, and mood.

Leveraging this finding, researchers were able to genetically tweak even sedentary mice’s levels of galanin, shifts that lowered their anxious response to stress.

The study’s authors explain that this study helps pin down the biological mechanisms driving exercise’s positive effects on stress. While further human experiments are needed to confirm these findings, the researchers have practical advice for people looking to get these benefits: perform regular, aerobic exercise.

Aug 30, 2020

Top longevity scientists views on radical life extension

Posted by in categories: biological, life extension

Excerpts of talks and interviews on biological radical life extension given by some of the world top longevity scientists.
The compendium includes thoughts, predictions and claims made by the following longevity leaders (listed in alphabetical order):
Aubrey de Grey, PhD: https://en.wikipedia.org/wiki/Aubrey_de_Grey
David Sinclair, PhD: https://en.wikipedia.org/wiki/David_Andrew_Sinclair
George Church, PhD: https://en.wikipedia.org/wiki/George_Church_(geneticist)
Juan Carlos Izpisúa Belmonte, PhD: https://en.wikipedia.org/wiki/Juan_Carlos_Izpisua_Belmonte
María Blasco Marhuenda, PhD: https://en.wikipedia.org/wiki/Mar%C3%ADa_Blasco_Marhuenda

I added embedded subtitles in English when scientists speak in Spanish.
For subtitles in Spanish when scientists speak in English, just choose the option in Youtube to add the subtitles in Spanish I created.

Continue reading “Top longevity scientists views on radical life extension” »

Aug 29, 2020

Demonstrating vortices as Brownian particles in turbulent flows

Posted by in categories: biological, engineering, particle physics

Brownian motion of particles in fluid is a common collective behavior in biological and physical systems. In a new report on Science Advances, Kai Leong Chong, and a team of researchers in physics, engineering, and aerospace engineering in China, conducted experiments and numerical simulations to show how the movement of vortices resembled inertial Brownian particles. During the experiments, the rotating turbulent convective vortical flow allowed the particles to move ballistically at first and diffusively after a critical time in a direct behavioral transition—without going through a hydrodynamic memory regime. The work implies that convective vortices have inertia-induced memory, so their short-term movement was well-defined in the framework of Brownian motion here for the first time.

Brownian motion

Albert Einstein first provided a theoretical explanation to Brownian motion in 1905 with the movement of pollen particles in a thermal bath, the phenomenon is now a common example of stochastic processes that widely occur in nature. Later in 1908, Paul Langevin noted the inertia of particles and predicted that their motion would be ballistic within a short period of time, changing to diffuse motion after a specific timeline. However, due to the rapidity of this transition, it took more than a century for researchers to be able to directly observe the phenomenon. Nevertheless, the “pure” Brownian motion predicted by Langevin was not observed in liquid systems and the transition spanned a broad range of time scales. The slow and smooth transition occurred due to the hydrodynamic memory effect, to ultimately generate long-range correlations.

Aug 28, 2020

Watch: Threatened pools in Mexican desert hold clues to early life

Posted by in categories: biological, food

One of, if not the oldest visible form of life, to which we owe much of our original Oxygen rich environment, these Stromatolites are under threat.


Agriculture has threatened an area holding an exceptional array of microbes.

Continue reading “Watch: Threatened pools in Mexican desert hold clues to early life” »

Aug 27, 2020

The Merging Of Human And Machine. Two Frontiers Of Emerging Technologies

Posted by in categories: biological, robotics/AI

An amazing aspect of living in The Fourth Industrial Era is that we are at a new inflection point in bringing emerging technologies to life. We are in an era of scientific breakthroughs that will change the way of life as we currently know it. While there are many technological areas of fascination for me, the meshing of biology with machine is one of the most intriguing. It fuses many elements of technologies especially artificial intelligence and pervasive computing. I have highlighted two frontiers of “mind-bending” developments that are on the horizon, Neuromorphic technologies, and human-machine biology.

Neuromorphic Technologies

Human computer interaction (HCI) was an area of research that started in the 1980s and has come a long way in a short period of time. HCI was the foundation for what we call neuromorphic computing, the integration of systems containing electronic analog circuits to mimic neuro-biological architectures present in the biological nervous system.

Continue reading “The Merging Of Human And Machine. Two Frontiers Of Emerging Technologies” »

Aug 26, 2020

A Ball of Bacteria Survived for 3 Years … in Space!

Posted by in categories: biological, space

WIREDNew research from the Japanese Tanpopo mission adds to scientists’ understanding of how living organisms can endure the hostile environment.

Aug 22, 2020

Meet the Xenobot, the World’s First-Ever “Living” Robot

Posted by in categories: biological, robotics/AI

These researchers paired biology with AI to create the world’s first “living” robots 🤯.

Aug 19, 2020

Bacteria can defuse dangerous chemical in Passaic River

Posted by in categories: biological, chemistry

Bacteria that can help defuse highly toxic dioxin in sediments in the Passaic River—a Superfund hazardous waste site—could eventually aid cleanup efforts at other dioxin-contaminated sites around the world, according to Rutgers scientists.

Their research, published in the journal Environmental Science & Technology, needs further work to realize the full potential of the beneficial bottom-dwelling microbes.

“The bacteria-driven process we observed greatly decreases the toxicity of ,” said senior author Donna E. Fennell, a professor who chairs the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University–New Brunswick.

Page 4 of 8912345678Last