A newly devised cylindrical metamaterial could protect sensitive engineering equipment by isolating vibrations.
In science and engineering, it’s unusual for innovation to come in one fell swoop. It’s more often a painstaking plod through which the extraordinary gradually becomes ordinary.
But we may be at an inflection point along that path when it comes to engineered structures whose mechanical properties are unlike anything seen before in nature, also known as mechanical metamaterials. A team led by researchers at the University of Michigan and the Air Force Research Laboratory (AFRL) has shown how to 3D print intricate tubes that can use their complex structure to stymie vibrations.
Such structures could be useful in a variety of applications where people want to dampen vibrations, including transportation, civil engineering and more. The team’s new study, published in the journal Physical Review Applied, builds on decades of theoretical and computational research to create structures that passively impede vibrations trying to move from one end to the other.
A research team affiliated with UNIST has unveiled a new type of artificial muscle that can seamlessly transition from soft and flexible to rigid and strong—much like rubber transforming into steel. When contracting, this innovative muscle can lift many times its own weight, delivering energy output far surpassing that of human muscles.
Led by Professor Hoon Eui Jeong in the Department of Mechanical Engineering at UNIST, the research team has successfully created a soft artificial muscle capable of dynamically adjusting its stiffness.
The study is published online in Advanced Functional Materials.
With a clever design, researchers have solved eddy-current damping in macroscopic levitating systems, paving the way for a wide range of sensing technologies.
Levitation has long been pursued by stage magicians and physicists alike. For audiences, the sight of objects floating midair is wondrous. For scientists, it’s a powerful way of isolating objects from external disturbances.
This is particularly useful in the case of rotors, as their torque and angular momentum, used to measure gravity, gas pressure, momentum, among other phenomena in both classical and quantum physics, can be strongly influenced by friction. Freely suspending the rotor could drastically reduce these disturbances, and now, researchers from the Okinawa Institute of Science and Technology (OIST) have designed, created, and analyzed such a macroscopic device, bringing the magic of near-frictionless levitation down to Earth through precision engineering.
A research team led by Prof. Lin Yiheng from the University of Science and Technology of China (USTC), collaborating with Prof. Yuan Haidong from the Chinese University of Hong Kong, succeeded in generating multipartite quantum entangled states across two, three, and five modes using controlled dissipation as a resource. Their study is published in Science Advances.
Multimode entanglement is a key resource in quantum computation, communication, simulation, and sensing. One of the major challenges in achieving stable and scalable multimode entanglement lies in the inherent susceptibility of quantum systems to environmental noise—a phenomenon known as dissipation. To mitigate dissipative effects, conventional preparation methods often require isolating the system from its surroundings.
Recent theoretical and experimental works have revealed an innovative perspective: when properly engineered, dissipation can be transformed into a resource for generating specific quantum states—known as dissipation engineering. However, previous related experiments were confined to single-mode and two-mode quantum systems, and significant challenges remain in the experimental realization of entangled states across multimode bosonic systems.
Imagine tiny machines, smaller than a virus, spinning inside cancer cells and rewiring their behavior from within. No surgery, no harsh chemicals, just precision at the molecular level.
Two researchers from the Artie McFerrin Department of Chemical Engineering at Texas A&M University are investigating light-activated molecular motors—nanometer-sized machines that can apply mechanical forces from within cells to target and selectively disrupt cancerous activity.
Chemical engineering professor Dr. Jorge Seminario and postdoctoral associate Dr. Diego Galvez-Aranda have contributed to pioneering research by demonstrating a new frontier in non-invasive cancer therapies. The recently published manuscript in the Journal of the American Chemical Society continues this line of investigation.
Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the researchers achieved light quality remarkably close to natural sunlight, improving color accuracy and reducing eye strain.
Chinese researchers have developed a novel method to efficiently engineer natural killer (NK) cells for cancer immunotherapy. NK cells are central to early antiviral and anticancer defense—among other immune system roles—making them well-suited for cancer immunotherapy. For example, chimeric antigen receptor (CAR)-NK therapy involves adding a lab-built receptor (a CAR) to an NK cell, enabling it to recognize a specific antigen on a cancer cell and attack it.
However, conventional CAR-NK immunotherapies rely primarily on mature NK cells isolated from human tissues, such as peripheral blood or cord blood, which poses multiple challenges, including high heterogeneity, low engineering efficiency, high handling costs, and time-intensive processing.
Now a research team led by Prof. Wang Jinyong from the Institute of Zoology of the Chinese Academy of Sciences has developed a novel method to generate induced (that is, lab-generated) NK (iNK) cells and CAR-engineered iNK (CAR-iNK) cells from CD34+ hematopoietic stem and progenitor cells (HSPCs) derived from cord blood.
Quantum defects are tiny imperfections in solid crystal lattices that can trap individual electrons and their “spin” (i.e., the internal angular momentum of particles). These defects are central to the functioning of various quantum technologies, including quantum sensors, computers and communication systems.
Reliably predicting and controlling the behavior of quantum defects is thus very important, as it could pave the way for the development of better performing quantum systems tailored for specific applications. A property closely linked to the dependability of quantum technologies is the so-called spin readout contrast, which essentially determines how clear it is to distinguish between two different spin states in a system.
Researchers at the Harbin Institute of Technology (Shenzhen), the HUN-REN Wigner Research Center for Physics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences and other institutes recently showed that strain engineering (i.e., stretching or compressing materials) could be used to control how quantum defects behave and enhance spin readout contrast in quantum systems.
A study led by University of Massachusetts Amherst researchers demonstrates that their nanoparticle-based vaccine can effectively prevent melanoma, pancreatic and triple-negative breast cancer in mice. Not only did up to 88% of the vaccinated mice remain tumor-free (depending on the cancer), but the vaccine reduced—and in some cases completely prevented—the cancer’s spread.
The study is published in Cell Reports Medicine.
“By engineering these nanoparticles to activate the immune system via multi-pathway activation that combines with cancer-specific antigens, we can prevent tumor growth with remarkable survival rates,” says Prabhani Atukorale, assistant professor of biomedical engineering in the Riccio College of Engineering at UMass Amherst and corresponding author on the paper.