Toggle light / dark theme

From landslides to pharmaceuticals: High-precision model simulates complex granular and fluid interactions

A research team from the School of Engineering at the Hong Kong University of Science and Technology has developed a new computational model to study the movement of granular materials such as soils, sands and powders. By integrating the dynamic interactions among particles, air and water phases, this state-of-the-art system can accurately predict landslides, improve irrigation and oil extraction systems, and enhance food and drug production processes.

The flow of granular materials—such as soil, sand and powders used in pharmaceuticals and food production—is the underlying mechanism governing many natural settings and industrial operations. Understanding how these particles interact with surrounding fluids like water and air is crucial for predicting behaviors such as soil collapse or fluid leakage.

However, existing models face challenges in accurately capturing these interactions, especially in partially saturated conditions where forces like and viscosity come into play.

A new study provides insights into cleaning up noise in quantum entanglement

Quantum entanglement—a connection between particles that produces correlations beyond what is classically possible—will be the backbone of future quantum technologies, including secure communication, cloud quantum computing, and distributed sensing. But entanglement is fragile; noise from the environment degrades entangled states over time, leaving scientists searching for methods to improve the fidelity of noisy entangled states.

Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME), University of Illinois Urbana-Champaign, and Microsoft have shown that it is fundamentally impossible to design a single one-size-fits-all protocol to counteract that noise.

“In , we often hope for a protocol that works in all scenarios—a kind of cure-all,” said Asst. Prof. Tian Zhong, senior author of the new work published in Physical Review Letters. “This result shows that when it comes to purifying entanglement, that’s simply too good to be true.”

US creates wood 10 times tougher than steel, can resist water, fire

A biotech startup from the U.S. is aiming to reshape the construction industry with the launch of a groundbreaking new material that mimics the look and feel of natural wood while outperforming high-grade steel in strength and durability.

Maryland-based firm InventWood, revealed that their engineering wood product called Superwood is a result of molecular-level transformation that turns natural wood into a material up to a dozen times stronger and 10 times tougher than its original form.

Computer scientists discover new security vulnerability in Intel processors

Anyone who speculates on likely events ahead of time and prepares accordingly can react quicker to new developments. What practically every person does every day, consciously or unconsciously, is also used by modern computer processors to speed up the execution of programs. They have so-called speculative technologies which allow them to execute instructions on reserve that experience suggests are likely to come next. Anticipating individual computing steps accelerates the overall processing of information.

However, what boosts computer performance in normal operation can also open up a backdoor for hackers, as recent research by computer scientists from the Computer Security Group (COMSEC) at the Department of Information Technology and Electrical Engineering at ETH Zurich shows.

The computer scientists have discovered a new class of vulnerabilities that can be exploited to misuse the prediction calculations of the CPU (central processing unit) in order to gain unauthorized access to information from other processor users. They will present their paper at the 34th USENIX Security Symposium (USENIX 2025), to be held August 13–15, 2025, in Seattle.

Advances in ceramic electrochemical cells promise more reliable hydrogen production and clean energy storage

Researchers from the University of Oklahoma have made significant advances in a promising technology for efficient energy conversion and chemical processing. Two recent studies involving protonic ceramic electrochemical cells, called PCECs, address significant challenges in electrochemical manufacturing and efficiency. These innovations are a crucial step toward reliable and affordable solutions for hydrogen production and clean energy storage.

The studies were led by Hanping Ding, Ph.D., an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma.

PCECs have traditionally struggled to maintain performance under the required for commercial use. In a study featured in Nature Synthesis, Ding and his colleagues reported a new approach that eliminates the need for cerium-based materials, which are prone to breakdown under high steam and heat.

Post from Isaac Arthur

By popular request we’ve begun adding playlists of the show as Podcasts on Youtube Music, I’ll try to add a new one every 2–3 days till we have most of our inventory up there, but given today’s Episode is *Cities of the Future*, a collection of all of those seemed a good idea https://www.youtube.com/playlist?list=PLIIOUpOge0LuyCbYUhy-79RQKkOXonmx4 These are the (tentatively named) upcoming playlists/podcasts list I’ll be adding, in no particular order: Megastructures & Extreme Engineering The Fermi Paradox & Alien Civilizations Space Colonization & Habitats Post-Scarcity & Future Civilizations Transhumanism & Human Evolution Propulsion & Interstellar Travel Terraforming & Planetary Engineering Mind, Machines & Alien Intelligence Future Warfare & Defense Strange Worlds & Alien Life.

Northwestern launches pioneering medical research institute with $10 million gift from Trustee Kimberly Querrey, bringing her total University giving to $391 million

Northwestern University Trustee Kimberly K. Querrey (’22, ’23 P) has made a $10 million gift to create and enhance the Querrey Simpson Institute for Regenerative Engineering at Northwestern University (QSI RENU), bringing her total giving to the institute to $35 million. The new institute will advance the development of medical tools that empower the human body to heal, focusing on the regeneration or reconstruction of various tissues and organs, such as the eyes, cartilage, spinal cord, heart, muscle, bone and skin.


The Querrey Simpson Institute for Regenerative Engineering at Northwestern University will advance research to regenerate and reconstruct tissues and organs.

Guillermo Ameer, director of the new Querrey Simpson Institute for Regenerative Engineering at Northwestern University, showcases his bioresorbable bandage, which delivers electrotherapy to wounds, accelerating diabetic ulcer healing and dissolving safely after use. QSI RENU combines engineering, biology, medicine and data science to develop technologies for tissue and organ function.

Scientists develop next-gen energy storage technologies that enable high power and capacity simultaneously

A research team has developed a high-performance supercapacitor that is expected to become the next generation of energy storage devices. With details published in the journal Composites Part B: Engineering, the technology developed by the researchers overcomes the limitations of existing supercapacitors by utilizing an innovative fiber structure composed of single-walled carbon nanotubes (CNTs) and the conductive polymer polyaniline (PANI).

Compared to conventional batteries, supercapacitors offer faster charging and higher power density, with less degradation over tens of thousands of charge and discharge cycles. However, their relatively low energy density limits their use over long periods of time, which has limited their use in practical applications such as and drones.

Researchers led by Dr. Bon-Cheol Ku and Dr. Seo Gyun Kim of the Carbon Composite Materials Research Center at the Korea Institute of Science and Technology (KIST) and Professor Yuanzhe Piao of Seoul National University (SNU), uniformly chemically bonded single-walled carbon nanotubes (CNTs), which are highly conductive, with polyaniline (PANI), which is processable and inexpensive, at the nanoscale.