Menu

Blog

Archive for the ‘engineering’ category

Apr 23, 2024

MXenes-based energy storage devices could be charged in seconds

Posted by in categories: chemistry, energy, engineering

A team at Texas A&M University is taking significant steps for the development of a new generation of energy storage devices. They aim to develop a device that can combine the benefits of current technologies while addressing their limitations.

Dr. Abdoulaye Djire, a chemical engineering professor at Texas A&M University, as well as a few chemistry engineering graduates are focusing on MXenes, which is expected to be a compelling alternative to conventional lithium-ion batteries. Currently, the team is exploring the major advantages of nitride MXenes.

Apr 23, 2024

Unveiling the Hidden World of Granular Materials: MIT Engineers Probe the Mechanisms of Landslides and Earthquakes

Posted by in categories: engineering, food

Granular materials, those made up of individual pieces, whether grains of sand or coffee beans or pebbles, are the most abundant form of solid matter on Earth. The way these materials move and react to external forces can determine when landslides or earthquakes happen, as well as more mundane events such as how cereal gets clogged coming out of the box.

Yet, analyzing the way these flow events take place and what determines their outcomes has been a real challenge, and most research has been confined to two-dimensional experiments that don’t reveal the full picture of how these materials behave.

Now, researchers at MIT have developed a method that allows for detailed 3D experiments that can reveal exactly how forces are transmitted through granular materials, and how the shapes of the grains can dramatically change the outcomes. The new work may lead to better ways of understanding how landslides are triggered, as well as how to control the flow of granular materials in industrial processes. The findings are described in the journal PNAS in a paper by MIT professor of civil and environmental engineering Ruben Juanes and Wei Li SM ’14, PhD ’19, who is now on the faculty at Stony Brook University.

Apr 22, 2024

NASA’s Voyager 1 Resumes Sending Engineering Updates to Earth

Posted by in categories: engineering, health

After some inventive sleuthing, the mission team can — for the first time in five months — check the health and status of the most distant human-made object in existence.

Apr 17, 2024

Ocean Measurements Detect Conditions for Giant Waves

Posted by in category: engineering

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves.

Researchers still disagree on what causes rare and large “rogue waves,” which can damage ships, lighthouses, and other structures. Now, using combined measurements of wave heights and wind speed in an oceanic region known for its rough seas, a research team has demonstrated that wind can produce the wave conditions expected to lead to rogue waves [1]. Previously, this idea was demonstrated only in laboratory experiments. The researchers hope this new understanding will contribute to the development of methods for predicting this dangerous phenomenon.

There is no consensus on what causes rogue waves in the ocean, says Alessandro Toffoli, an expert in infrastructure engineering at the University of Melbourne, Australia. One prominent view is that oceanic rogue waves occur purely through a statistical effect: although waves typically follow a “normal,” or Gaussian, distribution, with heights strongly clustering around an average, a fortuitous convergence of many such waves can occasionally produce a very large wave.

Apr 17, 2024

Powering the future: Advanced Energy Harvesting for loT Devices

Posted by in categories: energy, engineering, internet

Researchers have developed a high-performance energy management unit (EMU) that significantly boosts the efficiency of electrostatic generators for Internet of Things (IoT) applications. This breakthrough addresses the challenge of high impedance mismatch between electrostatic generators and electronic devices, unlocking new possibilities for ambient energy harvesting.

Electrostatic generators have emerged as a promising solution for powering low-power devices in Internet of Things (IoT) networks, utilizing energy from environmental sources such as wind and human motion. Despite their potential, the effectiveness of these generators has been hampered by an impedance mismatch when connected to electronic devices, leading to low energy utilization efficiency.

A study published in the journal Microsystems & Nanoengineering introduces an efficient energy management unit (EMU) designed to significantly boost the power efficiency of electrostatic generators for IoT devices. This innovation addresses the longstanding challenge of impedance mismatch and propels forward the potential for using environmental energy harvesting within the IoT domain.

Apr 16, 2024

California exceeds 100% of energy demand with renewables over a record 30 days

Posted by in categories: energy, engineering

In a major clean energy benchmark, wind, solar, and hydro exceeded 100% of demand on California’s main grid for 30 of the past 38 days.

Stanford University professor of civil and environmental engineering Mark Z. Jacobson has been tracking California’s renewables performance, and he shares his findings on Twitter (X) when the state breaks records. Yesterday he posted:

Jacobson notes that supply exceeds demand for “0.25−6 h per day,” and that’s an important fact. The continuity lies not in renewables running the grid for the entire day but in the fact that it’s happening on a consistent daily basis, which has never been achieved before.

Apr 16, 2024

Designing proteins with language models

Posted by in category: engineering

Protein language models learn from diverse sequences spanning the evolutionary tree and have proven to be powerful tools for sequence design, variant effect prediction and structure prediction. What are the foundations of protein language models, and how are they applied in protein engineering?

Apr 14, 2024

MIT researchers reveal incredible method to remove array of harmful pollutants from water: ‘Most technologies focus only on specific molecules’

Posted by in categories: chemistry, engineering

Researchers at the MIT Department of Chemical Engineering have created a new method of cleaning micropollutants from water, using zwitterionic molecules — i.e., molecules with the same number of positive and negative charges.

Devashish Gokhale, a PhD student and one of the researchers, explained zwitterionic molecules by comparing them to magnets.

Continue reading “MIT researchers reveal incredible method to remove array of harmful pollutants from water: ‘Most technologies focus only on specific molecules’” »

Apr 13, 2024

Cornell researchers develop lithium EV battery that charges under 5 mins

Posted by in categories: engineering, sustainability, transportation

A research team led by Lynden Archer, professor and dean of Cornell Engineering, has developed a new lithium battery that can charge in as little as five minutes. This could help address anxiety associated with the charging time of electric vehicles (EVs) and increase their adoption.

In their bid to reduce emissions from transportation, countries worldwide are looking to electrify various modes of transport. Road-based transport such as cars, buses, and trucks have led this transformation, aiming to even ban the sale of fossil fuel-powered cars in the next decade.

Apr 12, 2024

Novel Quantum Effect Observed in a Crystalline Material

Posted by in categories: engineering, particle physics, quantum physics

Physicists have observed a novel quantum effect termed “hybrid topology” in a crystalline material. This finding opens up a new range of possibilities for the development of efficient materials and technologies for next-generation quantum science and engineering.

The finding, published on April 10th in the journal Natur e, came when Princeton scientists discovered that an elemental solid crystal made of arsenic (As) atoms hosts a never-before-observed form of topological quantum behavior. They were able to explore and image this novel quantum state using a scanning tunneling microscope (STM) and photoemission spectroscopy, the latter a technique used to determine the relative energy of electrons in molecules and atoms.

This state combines, or “hybridizes,” two forms of topological quantum behavior—edge states and surface states, which are two types of quantum two-dimensional electron systems. These have been observed in previous experiments, but never simultaneously in the same material where they mix to form a new state of matter.

Page 1 of 24112345678Last