Toggle light / dark theme

From punch card-operated looms in the 1800s to modern cellphones, if an object has an “on” and an “off” state, it can be used to store information.

In a computer laptop, the binary ones and zeroes are transistors either running at low or high voltage. On a compact disc, the one is a spot where a tiny indented “pit” turns to a flat “land” or vice versa, while a zero is when there’s no change.

Historically, the size of the object making the “ones” and “zeroes” has put a limit on the size of the storage device. But now, University of Chicago Pritzker School of Molecular Engineering (UChicago PME) researchers have explored a technique to make ones and zeroes out of crystal defects, each the size of an individual atom for classical computer memory applications.

Researchers from Mass General Brigham and collaborating institutions have developed a non-invasive approach to manipulate cardiac tissue activity by using light to stimulate an innovative ink incorporated into bioprinted tissue. Their goal is to develop a technique that can be used to repair the heart. Their findings in preclinical models, published in Science Advances, show the transformative potential of non-invasive therapeutic methods to control electrically active tissues.

“We showed for the first time that with this optoelectronically active ink, we can print scaffolds that allow remote control of engineered heart tissues,” said co-corresponding author Y. Shrike Zhang, Ph.D., of the Division of Engineering in Medicine at Brigham and Women’s Hospital, a founding member of the Mass General Brigham health care system. “This approach paves the way for non-invasive light stimulation, tissue regeneration, and host integration capabilities in cardiac therapy and beyond.”

Three-dimensional bioprinted tissues composed of cells and other body-compatible materials are a powerful emerging tool to repair damaged heart tissue. But most bioprinted tissues cannot generate the necessary electrical activity for cellular function. They must instead rely on invasive wire and electrode placement to control heart activity, which can damage body tissues.

Ripples, like ones produced by raindrops falling in a puddle, are also called capillary waves. Studied since antiquity, they have garnered considerable interest in modern science due to their ability to reveal information about the medium on which they travel. This makes them particularly valuable for studying soft and biological matter in microfluidic applications, which focus on how fluids behave in microscopic environments.

Now physicists and from Aalto University’s Department of Neuroscience and Biomedical Engineering and Department of Applied Physics have unearthed new characteristics of capillary waves, setting a record for their speed while doing so.

The paper is published in Nature Communications.

Entanglement—linking distant particles or groups of particles so that one cannot be described without the other—is at the core of the quantum revolution changing the face of modern technology.

While entanglement has been demonstrated in very small particles, new research from the lab of University of Chicago Pritzker School of Molecular Engineering (UChicago PME) Prof. Andrew Cleland is thinking big, demonstrating high-fidelity entanglement between two acoustic wave resonators.

The paper is published in Nature Communications.

Altilium has filed a patent application for its proprietary EcoCathode™ recycling process, underlining its technical leadership in the UK and its commitment to establishing a national champion for EV battery recycling.

The patent provides a process, apparatus and system for recovering battery metals (such as cobalt, manganese, nickel and lithium) and graphite, and the production of battery precursors and battery-ready cathode active materials (CAM), from black mass (comprising a mixed feed of critical compounds or elements).

Through microstructure reengineering, Altilium’s EcoCathode™ process represents a significant stride in clean technology and sustainable EV battery recycling in the UK. Recovering over 95% of crucial metals from old EV batteries, the technology will contribute to a sustainable domestic supply of battery raw materials, reducing carbon emissions by over 50% and reducing the cost of CAM by more than 20% compared to conventional virgin mining practices.

Science fiction writers have long featured terraforming, the process of creating an Earth-like or habitable environment on another planet, in their stories. Scientists themselves have proposed terraforming to enable the long-term colonization of Mars. A solution common to both groups is to release carbon dioxide gas trapped in the Martian surface to thicken the atmosphere and act as a blanket to warm the planet.

However, Mars does not retain enough carbon dioxide that could practically be put back into the atmosphere to warm Mars, according to a new NASA-sponsored study. Transforming the inhospitable Martian environment into a place astronauts could explore without life support is not possible without technology well beyond today’s capabilities.

Environmental Gerontology & Vulnerability Science For Health And Well-Being — Dr. Amir Baniassadi, Ph.D. — Marcus Institute for Aging Research, Hebrew SeniorLife / Harvard Medical School.


Dr. Amir Baniassadi, Ph.D. is an Instructor of Medicine at Harvard Medical School and an Assistant Scientist in Marcus Institute for Aging Research (https://www.marcusinstituteforaging.o… where he works on environmental impacts on health and well-being of older populations.

Dr. Baniassadi works on the impacts of ambient air temperature and air quality (both indoors and outdoors) on outcomes related to the health and well-being of physiologically and socioeconomically vulnerable populations. His research applies novel environmental modeling and measurement techniques along with remote and long-term physiological and functional monitoring of individuals to establish relationships between exposure and outcome variables of interest outside clinical lab settings. The ultimate goal of his research is to develop environmental interventions that optimize the environment for health and longevity of older adults.

Estimating spectral features of quantum many-body systems has attracted great attention in condensed matter physics and quantum chemistry. To achieve this task, various experimental and theoretical techniques have been developed, such as spectroscopy techniques1,2,3,4,5,6,7 and quantum simulation either by engineering controlled quantum devices8,9,10,11,12,13,14,15,16 or executing quantum algorithms17,18,19,20 such as quantum phase estimation and variational algorithms. However, probing the behaviour of complex quantum many-body systems remains a challenge, which demands substantial resources for both approaches. For instance, a real probe by neutron spectroscopy requires access to large-scale facilities with high-intensity neutron beams, while quantum computation of eigenenergies typically requires controlled operations with a long coherence time17,18. Efficient estimation of spectral properties has become a topic of increasing interest in this noisy intermediate-scale quantum era21.

A potential solution to efficient spectral property estimation is to extract the spectral information from the dynamics of observables, rather than relying on real probes such as scattering spectroscopy, or direct computation of eigenenergies. This approach capitalises on the basics in quantum mechanics that spectral information is naturally carried by the observable’s dynamics10,20,22,23,24,25,26. In a solid system with translation invariance, for instance, the dynamic structure factor, which can be probed in spectroscopy experiments7,26, reaches its local maximum when both the energy and momentum selection rules are satisfied. Therefore, the energy dispersion can be inferred by tracking the peak of intensities in the energy excitation spectrum.

Engineering researchers at Lawrence Livermore National Laboratory (LLNL) have achieved breakthroughs in multi-material 3D printing through the power of capillary action. The LLNL team printed lattice structures with a series of custom-designed unit cells to selectively absorb fluid materials and precisely direct them into patterns – making it possible to fabricate complex structures with unprintable materials or materials with vastly different properties.

According to the researchers, the technique, featured in Advanced Materials Technologies, would help engineers design and optimize structures for properties like extreme strength-to-weight ratios, large surface areas, or precision deformation.

“By decoupling some of the printing and patterning techniques, you could achieve some complex multi-material structures, and you wouldn’t always have to be able to print the material,” said Hawi Gemeda, Materials Engineering Division (MED) staff engineer at LLNL and the paper’s lead author.