Archive for the ‘engineering’ category: Page 7

Jul 10, 2023

The Materials of Future Transistors

Posted by in categories: computing, engineering

Researchers in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering have demonstrated control over an emerging material, which they consider as a possible future alternative to silicon in microelectronics. This is a timely development, because scientists and engineers face challenges in continuing the transistor shrinking trend, an important driver of computer chip performance.

The continuous performance improvement of these chips has been driven by shrinking the size of the most basic logic “Lego” piece – the transistor. Transistors are miniature switches that control the flow of electric currents, analogous to a faucet controlling the flow of water. Already in the early 1960s, Gordon Moore, the founder of Intel, proposed that the transistors’ miniaturization rate should allow doubling of the number of transistors per area every 2 years.

Jul 9, 2023

Stevens Institute of Technology: Northrup Grumman Recognizes 21 Space Systems Engineering Corporate Grads

Posted by in categories: education, engineering

Stevens’ School of Systems and Enterprises (SSE) held a reception at Northrop Grumman’s Space Systems headquarters in Dulles, Va., to congratulate its 21 employees who received their Master of Engineering in Space Systems Engineering through the SSE Corporate Education program.

SSE’s Dr. Wiley Larson was able to congratulate the cohort of graduates, and Marcos Stephens, director, technical staff development for NGC Space Systems, served as the program emcee. Stephens and Carol Ruiz, director, online and corporate engagement for SSE, planned the event with the assistance of Julie Godby, executive assistant at NGC. The School of Systems and Enterprises has partnered with Northrup Grumman since 2006 and is excited to be engaged with their Space Systems segment.

Jul 8, 2023

Why Hardware And Software Synergy Is The Key To Driving The Future Of Innovation

Posted by in categories: chemistry, engineering, transportation

This benefits customers by accelerating access to future vehicles that feature the latest technology while also enabling their current vehicles to be eligible to receive updates and improvements over time—unlocking additional value beyond the initial point of purchase. And for large enterprises, shorter development cycles with less ground-up engineering can equate to significant cost savings and allow more investment in innovation.

Beyond vehicles themselves, the tools, techniques and processes that are required to engineer and manufacture at scale are also benefitting from developments in the latest hardware technology. Advancements in raw material chemistry and processing, fabrication and physical sciences are leading to lighter, stronger and better-performing vehicle applications in parallel with greater connectivity.

As advancements in transportation technology continue to evolve, it’s important for companies to balance their focus on the continual development of both hardware and software technologies. Forgoing advancements in one without investing in the development of the other can lead to significant risks and missed opportunities for long-term success.

Jul 8, 2023

Unraveling the Mysteries of Human Tissue: A Comprehensive Atlas

Posted by in categories: biotech/medical, engineering

Which types of cells can be located in various human tissues, and where? Which genes show activity in these individual cells, and which proteins can be identified within them? Detailed answers to these inquiries and more are expected to be supplied by a specialized atlas. This atlas will particularly elucidate how different tissues take shape during embryonic development and the underlying causes of diseases.

In the process of developing this atlas, the researchers have the goal to chart not just tissues directly procured from humans but also structures referred to as organoids. These are three-dimensional tissue aggregates that are grown in the lab and develop in a manner similar to human organs, albeit on a smaller scale.

“The advantage of organoids is that we can intervene in their development and test active substances on them, which allows us to learn more about healthy tissue as well as diseases,” explains Barbara Treutlein, Professor of Quantitative Developmental Biology at the Department of Biosystems Science and Engineering at ETH Zurich in Basel.

Jul 8, 2023

Predicting the compressive engineering performance of carbon fibre-reinforced plastics

Posted by in categories: engineering, law

The Titan’s lack of credentials was noted in legal waivers OceanGate asked customers to sign before voyages. The company reportedly warned that its newest submersible had “not been approved or certified by any regulatory body” and that a dive “could result in physical injury, disability, emotional trauma or death.”

You do realize carbon fiber is very weak with compression. Tensile strength is superior to the compression strength. No one is talking about regulation for some reason, which disturbs me. Many things are not on the market because of regulations, like FAA regulations. However some geniuses make a sub out of carbon fiber and other cheap materials, they make people sign waivers telling occupants they are going in an unregulated craft, and people act suprised that something went wrong. Something was going to go wrong, the sub was made of carbon fiber. I don’t even know how the fibers were aligned.

This paper examines the compressive strength data of a recent experimental study [Smith FC. The effect of constituents’ properties on the mechanical performance of fibre-reinforced plastics. PhD thesis. Centre for Composite Materials, Imperial College, April 1998] concerned with the evaluation of a range of engineering properties of continuous carbon fibre/epoxy composites subjected to static tensile and compressive loading. A plastic fibre kinking analysis [Budiansky B. Micromechanics. Comput Struct 1983;16:3–12] and a linear softening cohesive zone model (CZM) [Soutis C. Compressive failure of notched carbon fibre–epoxy panels. PhD thesis. Cambridge University Engineering Department, UK, 1989; Soutis C, Fleck NA, Smith PA.

Jul 6, 2023

Dr. Behnaam Aazhang, Ph.D. — Director, Rice Neuroengineering Initiative (NEI), Rice University

Posted by in categories: biotech/medical, computing, engineering, information science, neuroscience, security

Restoring And Extending The Capabilities Of The Human Brain — Dr. Behnaam Aazhang, Ph.D. — Director, Rice Neuroengineering Initiative, Rice University

Dr. Behnaam Aazhang, Ph.D. ( is the J.S. Abercrombie Professor, Electrical and Computer Engineering, and Director, Rice Neuroengineering Initiative (NEI —, Rice University, where he has broad research interests including signal and data processing, information theory, dynamical systems, and their applications to neuro-engineering, with focus areas in (i) understanding neuronal circuits connectivity and the impact of learning on connectivity, (ii) developing minimally invasive and non-invasive real-time closed-loop stimulation of neuronal systems to mitigate disorders such as epilepsy, Parkinson, depression, obesity, and mild traumatic brain injury, (iii) developing a patient-specific multisite wireless monitoring and pacing system with temporal and spatial precision to restore the healthy function of a diseased heart, and (iv) developing algorithms to detect, predict, and prevent security breaches in cloud computing and storage systems.

Continue reading “Dr. Behnaam Aazhang, Ph.D. — Director, Rice Neuroengineering Initiative (NEI), Rice University” »

Jul 6, 2023

Researchers create highly conductive metallic gel for 3D printing

Posted by in categories: 3D printing, 4D printing, chemistry, engineering

Researchers have developed a metallic gel that is highly electrically conductive and can be used to print three-dimensional (3D) solid objects at room temperature. The paper, “Metallic Gels for Conductive 3D and 4D Printing,” has been published in the journal Matter.

“3D printing has revolutionized manufacturing, but we’re not aware of previous technologies that allowed you to print 3D metal objects at room in a single step,” says Michael Dickey, co-corresponding author of a paper on the work and the Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at North Carolina State University. “This opens the door to manufacturing a wide range of electronic components and devices.”

To create the metallic gel, the researchers start with a solution of micron-scale particles suspended in water. The researchers then add a small amount of an indium-gallium alloy that is liquid metal at room temperature. The resulting mixture is then stirred together.

Jul 5, 2023

Harvard Scientists Control “Points of Darkness” for Remote Sensing and Covert Detection Applications

Posted by in categories: engineering, materials

Two studies report new methods for using metasurfaces to create and control dark areas called “optical singularities.”

Optical devices and materials allow scientists and engineers to harness light for research and real-world applications, like sensing and microscopy. Federico Capasso’s group at the Harvard John A. Paulson School of Engineering Applied Sciences (SEAS) has dedicated years to inventing more powerful and sophisticated optical methods and tools. Now, his team has developed new techniques to exert control over points of darkness, rather than light, using metasurfaces.

“Dark regions in electromagnetic fields, or optical singularities, have traditionally posed a challenge due to their complex structures and the difficulty in shaping and sculpting them. These singularities, however, carry the potential for groundbreaking applications in fields such as remote sensing and precision measurement,” said Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and senior corresponding author on two new papers describing the work.

Jul 3, 2023

Designing surfaces to improve bone grafts

Posted by in categories: biotech/medical, engineering

The field of bone implants has taken incredible strides thanks to technological innovations that allow for stronger grafts that are easier to install. Yet even with these advances, there are still risks involved in such procedures. Implants can be loosened following operations, for example, which can lead to costly surgical revisions that lengthen the recovery process for patients.

New research published in Nature Biomedical Engineering from an interdisciplinary team from Northwestern Engineering’s Center for Advanced Regenerative Engineering (CARE) and Center for Physical Genomics and Engineering (CPGE) could reduce the likelihood of these painful, expensive complications.

Working at the convergence of the physical sciences, biology, surgery, and engineering, the investigators introduced the concept of surface topography-induced chromatin engineering. In a collaboration with The University of Chicago’s Russell R. Reid, MD, Ph.D., and Tong-Chuan He, MD, Ph.D., the team explained how and why to use surfaces to change patterns, validating the method in vivo.

Jun 30, 2023

New drug delivery method can reverse senescence of stem cells

Posted by in categories: biotech/medical, chemistry, engineering

As we age, our bodies change and degenerate over time in a process called senescence. Stem cells, which have the unique ability to change into other cell types, also experience senescence, which presents an issue when trying to maintain cell cultures for therapeutic use. The biomolecules produced by these cell cultures are important for various medicines and treatments, but once the cells enter a senescent state they stop producing them, and worse, they instead produce biomolecules antagonistic to these therapeutics.

While there are methods to remove older cells in a culture, the capture rate is low. Instead of removing older cells, preventing the cells from entering in the first place is a better strategy, according to Ryan Miller, a postdoctoral fellow in the lab of Hyunjoon Kong (M-CELS leader/EIRH/RBTE), a professor of chemical and biomolecular engineering.

“We work with , that are derived from fat tissue, and produce biomolecules that are essential for therapeutics, so we want to keep the cell cultures healthy. In a clinical setting, the ideal way to prevent senescence would be to condition the environment that these stem cells are in, to control the oxidative state,” said Miller. “With , you can pull them the cells out of this senescent state and make them behave like a healthy stem cell.”

Page 7 of 215First4567891011Last