Rolls-Royce teams up for advanced modular nuclear reactors to power 3 million homes.
Rolls-Royce is establishing the supply chain needed to manufacture and deploy its factory-built, low-carbon SMRs.
Trying to capture antineutrinos at low energy has just become a lot easier.
Neutrinos are extremely elusive elementary particles. Day and night, 60 billion of them stream from the sun through every square centimeter of Earth every second, which is transparent to them. After the first theoretical prediction of their existence, decades passed before they were actually detected. These experiments are usually extremely large to account for the very weak interaction of neutrinos with matter.
Scientists at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg have now succeeded in detecting antineutrinos from the reactor of a nuclear power plant using the CONUS+ experiment, with a detector mass of just 3 kg. The work is published in Nature.
Originally based at the Brokdorf nuclear power plant, the CONUS experiment was relocated to the Leibstadt nuclear power plant (KKL) in Switzerland in the summer of 2023. Improvements to the 1 kg germanium semiconductor detectors, as well as the excellent measurement conditions at KKL, made it possible for the first time to measure what is known as Coherent Elastic Neutrino-Nucleus Scattering (CEvNS).
It sees so much potential that it plans on investing in more than 25 plasma-related startups over the next five years. It is also opening a new Hax lab space in partnership with the New Jersey Economic Development Authority and the U.S. Department of Energy’s Princeton Plasma Physics Laboratory.
Nuclear fusion is an obvious place to seed plasma startups. The potential power source works by compressing fuel until it turns into a dense plasma, so dense that atoms begin fusing, releasing energy in the process.
“There’s so much here. The best ideas have yet to come to unlock a lot of potential in the fusion space,” Duncan Turner, general partner at SOSV, told TechCrunch.
Lithium is considered a key ingredient in the future commercial fusion power plants known as tokamaks, and there are several ways to use this metal to enhance the process. But a key question remained: How much does it impact the amount of fuel trapped in the walls of tokamaks?
According to new research from a global collaboration spanning nine institutions, the dominant driver of fuel retention is co-deposition: a process where fuel is trapped alongside lithium. Co-deposition can happen with lithium that is directly added during plasma operations, or lithium that has been previously deposited on the walls, only to wear away and be redeposited.
The research also showed that adding lithium during operation is more effective than pre-coating the walls with lithium in terms of creating an even temperature from the core of the plasma to its edge, which can help create the stable plasma conditions needed for commercial fusion.
Sahai has found a way to create extreme electromagnetic fields never before possible in a laboratory. These electromagnetic fields—created when electrons in materials vibrate and bounce at incredibly high speeds—power everything from computer chips to super particle colliders that search for evidence of dark matter. Until now, creating fields strong enough for advanced experiments has required huge, expensive facilities.
For example, scientists chasing evidence of dark matter use machines like the Large Hadron Collider at CERN, the European Organization for Nuclear Research, in Switzerland. To accommodate the radiofrequency cavities and superconducting magnets needed for accelerating high energy beams, the collider is 16.7 miles long. Running experiments at that scale demands huge resources, is incredibly expensive, and can be highly volatile.
Sahai developed a silicon-based, chip-like material that can withstand high-energy particle beams, manage the energy flow, and allow scientists to access electromagnetic fields created by the oscillations, or vibrations, of the quantum electron gas—all in a space about the size of your thumb.
The rapid movement creates the electromagnetic fields. With Sahai’s technique, the material manages the heat flow generated by the oscillation and keeps the sample intact and stable. This gives scientists a way to see activity like never before and opens the possibility of shrinking miles-long colliders into a chip.
A University of Colorado Denver engineer is on the cusp of giving scientists a new tool that can help them turn sci-fi into reality.
Imagine a safe gamma ray laser that could eradicate cancer cells without damaging healthy tissue. Or a tool that could help determine if Stephen Hawking’s multiverse theory is real by revealing the fabric underlying the universe.
IN A NUTSHELL 🌟 Coherent Corp. unveils a powerful new laser to accelerate the production of high-temperature superconducting tape. ⚡ The LEAP 600C laser utilizes Pulsed Laser Deposition, offering twice the power and longer maintenance intervals. 🔬 HTS tape is essential for fusion energy and various technologies, including MRI machines and power grids. 🌍 This